The Relationship Between Rationality on the Matrix and the Tree

Adam Brandenburger† Amanda Friedenberg‡

First Version: June 2003
Current Version: March 2011

The relationship between the matrix and the tree has been the subject of intensive investigation ever since the beginning of game theory. The issue goes back even to Borel and von Neumann.

Later, Thompson (1997), followed by Elmes and Reny (1994), uncovered the structural relationship between the matrix and the tree. They showed that, up to the duplication of pure strategies, two games have the same strategic form if and only if they differ by a certain sequence of elementary transformations.

There is also the question of the relationship between Nash equilibrium defined on the matrix (perfect, proper, stable equilibria, etc.) and equilibrium defined on the tree (extensive-form perfect, sequential equilibria, etc.). For example, Kohlberg and Mertens (1986) and Van Damme (1984) showed that a strategic-form proper equilibrium induces a sequential-equilibrium outcome in any tree with that strategic form.

But a very basic question has remained: What is the relationship between dominance in the matrix and dominance in the tree? And, following from this, what is the relationship between iterated dominance in the matrix and iterated dominance in the tree? This note addresses this question. See Shimoji (2004) for a related analysis.

*Bob Aumann, Burkhard Schipper, Joel Watson, Jeroen Swinkels, and participants at presentations at UCSD, the 2004 Canadian Economic Theory Conference, the 2004 European Econometric Society Meetings, and the Second World Congress of the Game Theory Society provided important input. Financial support from the Stern School of Business, the Department of Economics at Yale University, and the Olin School of Business is gratefully acknowledged. rrm-03-16-11
†Stern School of Business, New York University, adam.brandenburger@stern.nyu.edu
‡W.P. Carey School of Business, Arizona State University, amanda.friedenberg@asu.edu
1 Set-Up

For a finite set X, let $\mathcal{M}(X)$ be the set of probability measures on X and $\mathcal{M}^+(X)$ the set of full-support measures on X. Given a set $Y \subseteq X$, we will often identify $\mathcal{M}(Y)$ (resp. $\mathcal{M}^+(Y)$) with the set of probability measures on X with support contained in (resp. equal to) Y.

We begin with a finite extensive-form game Γ, in the sense of Kuhn (1953). We make two restrictions for the purpose (only) of notational simplicity: First, we restrict attention to two player games, with players Ann (resp. a) and Bob (resp. b). Second, we restrict attention to extensive-forms where each non-terminal node has at least two outgoing branches.

Note that S^a and S^b are finite. Let H^a (resp. H^b) be the family of information sets at which Ann (resp. Bob) moves, and let $H = H^a \cup H^b$. Write $S^a(h)$ (resp. $S^b(h)$) for the set of Ann’s strategies that allow information set h. Let Z be the set of terminal nodes, and $\zeta : S^a \times S^b \rightarrow Z$ map each strategy profile to the terminal node it reaches. Extensive-form payoff functions are maps $\Pi^a : Z \rightarrow \mathbb{R}$ and $\Pi^b : Z \rightarrow \mathbb{R}$.

We restrict attention to extensive-form games with perfect recall (Kuhn, 1950, 1953). These games satisfy an important property. In perfect-recall games, we have: For all information sets $h, i \in H^a$, either $S^a(h) \subseteq S^a(i)$, $S^a(i) \subseteq S^a(h)$, or $S^a(h) \cap S^a(i) = \emptyset$.

An extensive-form game Γ induces a strategic-form game $G = (S^a, S^b, \pi^a, \pi^b)$, where $\pi^a = \Pi^a \circ \zeta$ and $\pi^b = \Pi^b \circ \zeta$. We extend π^a to $\mathcal{M}(S^a) \times \mathcal{M}(S^b)$ in the usual way, i.e. $\pi^a(\sigma^a, \sigma^b) = \sum_{s^a \in S^a} \sum_{s^b \in S^b} \pi^a(s^a, s^b)\sigma^b(s^b)\sigma^a(s^a)$.

The following definitions all have counterparts with a and b reversed.

Definition 1.1 Fix $Y^a \times Y^b \subseteq S^a \times S^b$. A strategy $s^a \in Y^a$ is (strongly) **dominated with respect to** $Y^a \times Y^b$ if there exists $\sigma^a \in \mathcal{M}(Y^a)$ such that $\pi^a(\sigma^a, s^b) > \pi^a(s^a, s^b)$ for every $s^b \in Y^b$. Otherwise, say s^a is **undominated with respect to** $Y^a \times Y^b$. If s^a is undominated with respect to $S^a \times S^b$, simply say that s^a is **undominated**.

Definition 1.2 Fix $Y^a \times Y^b \subseteq S^a \times S^b$. A strategy $s^a \in Y^a$ is **weakly dominated with respect to** $Y^a \times Y^b$ if there exists $\sigma^a \in \mathcal{M}(Y^a)$ such that $\pi^a(\sigma^a, s^b) \geq \pi^a(s^a, s^b)$ for every $s^b \in Y^b$, and $\pi^a(\sigma^a, s^b) > \pi^a(s^a, s^b)$ for some $s^b \in Y^b$. Otherwise, say s^a is **admissible with respect to** $Y^a \times Y^b$. If s^a is admissible with respect to $S^a \times S^b$, simply say that s^a is **admissible**.

Note, if s^a is not contained in Y^a, then s^a is undominated (resp. admissible) given $Y^a \times Y^b$.

We have the usual equivalences:
Lemma 1.1 A strategy \(s^a \in Y^a \) is undominated with respect to \(Y^a \times Y^b \) if and only if there exists \(\sigma^b \in \mathcal{M}(Y^b) \) such that \(\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b) \) for every \(r^a \in Y^a \).

Lemma 1.2 A strategy \(s^a \in Y^a \) is admissible with respect to \(Y^a \times Y^b \) if and only if there exists \(\sigma^b \in \mathcal{M}(Y^b) \) such that \(\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b) \) for every \(r^a \in Y^a \).

We now define six procedures. The first two procedures are on the matrix. Let \(G_0^a \times G_0^b = G^+ \times G^+ = S^a \times S^b \). Define \(G_m^a \times G_m^b \) by induction, where \(G_{m+1}^a \) is the set of strategies \(s^a \in G_m^a \) that are undominated with respect to \(G_m^a \times G_m^b \). And likewise with \(a \) and \(b \) reversed. Define \(G_m^+ \times G_m^+ \) by induction, where \(G_{m+1}^+ \) is the set of strategies \(s^a \in G_m^+ \) that are admissible with respect to \(G_m^+ \times G_m^+ \). And likewise with \(a \) and \(b \) reversed.

Definition 1.3 Say \(s^a \) is \(m \)-rationalizable if \(s^a \in G_m^a \). Say \(s^a \) is \(m \)-admissible if \(s^a \in G_m^+ \).

The next two procedures are defined on the tree. Let \(\Gamma_0^0 \times \Gamma_0^b = \Gamma_0^+ \times \Gamma_0^+ = S^a \times S^b \). Define \(\Gamma_m^a \times \Gamma_m^b \) by induction, where \(\Gamma_{m+1}^a \) is the set of all strategies \(s^a \in \Gamma_m^a \) so that, for each \(h \in H^a \), \(s^a \) is undominated with respect to \([\Gamma_m^a \cap S^a(h)] \times [\Gamma_m^b \cap S^b(h)] \). And, likewise with \(a \) and \(b \) reversed. Define \(\Gamma_m^+ \times \Gamma_m^+ \) by induction, where \(\Gamma_{m+1}^+ \) is the set of all strategies \(s^a \in \Gamma_m^+ \) so that, for each \(h \in H^a \), \(s^a \) is admissible with respect to \([\Gamma_m^+ \cap S^a(h)] \times [\Gamma_m^+ \cap S^b(h)] \). And, likewise with \(a \) and \(b \) reversed.

Definition 1.4 Say \(s^a \) is \(m \)-extensive-form rationalizable if \(s^a \in \Gamma_m^a \). Say \(s^a \) is \(m \)-extensive-form admissible if \(s^a \in \Gamma_m^+ \).

The concept of extensive-form rationalizability is due to Pearce (1984). (See, also, Battigalli, 1997.) Shimoji and Watson (1998) show that it is equivalent to iterated conditional dominance. With this in mind, Definition 1.4 defines extensive-form rationalizability as iterated conditional dominance.

At times papers amend the above procedures and, instead, consider a variant which asks strategies to be undominated (resp. admissible) at each information set—not simply each information set at which the given player moves. (This is done for notational simplicity.) We will see that this choice does not have behavioral consequences. Toward this end, set

\[
\hat{\Gamma}_0^a \times \hat{\Gamma}_0^b = \hat{\Gamma}_0^+ \times \hat{\Gamma}_0^+ = S^a \times S^b.
\]

Define \(\hat{\Gamma}_{m+1}^a \) by induction, where \(\hat{\Gamma}_{m+1}^a \) is the set of all strategies \(s^a \in \hat{\Gamma}_m^a \) so that, for each \(h \in H^a \), \(s^a \) is undominated with respect to \([\hat{\Gamma}_m^a \cap S^a(h)] \times [\hat{\Gamma}_m^b \cap S^b(h)] \). And, likewise with \(a \) and \(b \) reversed.
and b reversed. Define $\hat{\Gamma}^{+,a}_m \times \hat{\Gamma}^{+,b}_m$ by induction, where $\hat{\Gamma}^{+,a}_m$ is the set of all strategies $s^a \in \hat{\Gamma}^{+,a}_m$ so that, for each $h \in H$, s^a is admissible with respect to $[\hat{\Gamma}^{+,a}_m \cap S^a(h)] \times [\hat{\Gamma}^{+,b}_m \cap S^b(h)]$. And, likewise with a and b reversed.

2 Summary of Results

It is well known that:

$$G^{+,a}_m \times G^{+,b}_m \subseteq G^a_m \times G^b_m,$$

for each m. In Section 3 we show:

$$G_m^{+,a} \times G_m^{+,b} = \Gamma_m^{+,a} \times \Gamma_m^{+,b} = \hat{\Gamma}_m^{+,a} \times \hat{\Gamma}_m^{+,b},$$

for each m. In Section 4, we show that under a condition on the tree we call No Relevant Convexities:

$$\hat{\Gamma}^a_m \times \hat{\Gamma}^b_m = \hat{\Gamma}^{+,a}_m \times \hat{\Gamma}^{+,b}_m.$$

It is well known that, for each m:

$$\hat{\Gamma}^a_m \times \hat{\Gamma}^b_m = \Gamma^a_m \times \Gamma^b_m.$$

(We review why in Section 5.) It follows that, in games satisfying No Relevant Convexities:

$$\Gamma^a_m \times \Gamma^b_m = \Gamma^{+,a}_m \times \Gamma^{+,b}_m = G^{+,a}_m \times G^{+,b}_m.$$

3 Admissibility in the Matrix and the Tree

Proposition 3.1 Fix an extensive-form game Γ with associated strategic form G. Then $G^{+,a}_m \times G^{+,b}_m = \Gamma^{+,a}_m \times \Gamma^{+,b}_m = \hat{\Gamma}^{+,a}_m \times \hat{\Gamma}^{+,b}_m$ for all m.

The proposition will follow immediately from:

Lemma 3.1 The following are equivalent:

(i) s^a is admissible with respect to $Y^a \times Y^b$.

(ii) For each $h \in H^a$, s^a is admissible with respect to $(Y^a \cap S^a(h)) \times (Y^b \cap S^b(h))$.

(iii) For each $h \in H$, s^a is admissible with respect to $(Y^a \cap S^a(h)) \times (Y^b \cap S^b(h))$.
Proof. We first show that part (i) implies part (iii). Certainly, part (iii) implies part (ii). Finally, we show part (ii) implies part (i).

Part (i) implies Part (iii): Fix \(s^a \) admissible with respect to \(Y^a \times Y^b \). It suffices to consider the case where \(s^a \in Y^a \). Then, there is a measure \(\sigma^b \in \mathcal{M}^+(Y^b) \) with \(\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b) \) for all \(r^a \in Y^a \). Fix an information set \(h \in H \) with \(s^a \in S^a(h) \). We will show that if \(Y^b \cap S^b(h) \neq \emptyset \), then \(\pi^a(s^a, \sigma^b(\cdot|S^b(h))) \geq \pi^a(r^a, \sigma^b(\cdot|S^b(h))) \) for all \(r^a \in Y^a \cap S^a(h) \).

(Note, in this case, \(\sigma^b(\cdot|S^b(h)) \) is well defined, since \(Y^b \cap S^b(h) \neq \emptyset \) implies \(\sigma^b(Y^b \cap S^b(h)) > 0 \).)

Suppose not. Then there is an \(r^a \in S^a(h) \) with \(\pi^a(r^a, \sigma^b(\cdot|S^b(h))) > \pi^a(s^a, \sigma^b(\cdot|S^b(h))) \). Since \(\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b) \), we must have \(\sigma^b(\cdot|S^b(h)) < 1 \). Let \(q^a \) be the strategy that allows \(h \), agrees with \(r^a \) at \(h \) onwards, but otherwise agrees with \(s^a \). We have

\[
\pi^a(q^a, \sigma^b) = \sigma^b(\cdot|S^b(h))\pi^a(r^a, \sigma^b(\cdot|S^b(h))) + (1 - \sigma^b(\cdot|S^b(h)))\pi^a(s^a, \sigma^b(\cdot|S^b(h)))
\]

\[
< \sigma^b(\cdot|S^b(h))\pi^a(s^a, \sigma^b(\cdot|S^b(h))) + (1 - \sigma^b(\cdot|S^b(h)))\pi^a(s^a, \sigma^b(\cdot|S^b(h)))
\]

\[
= \pi^a(s^a, \sigma^b),
\]

a contradiction.

Part (ii) implies Part (i): Suppose that, for each information set \(h \in H^a \), \(s^a \) is (extensive-form) admissible with respect to \([Y^a \cap S^a(h)] \times [Y^b \cap S^b(h)] \neq \emptyset \). If \(s^a \) is not in \(Y^a \), then certainly \(s^a \) is admissible with respect to \(Y^a \times Y^b \). So, we suppose \(s^a \in Y^a \).

Note, we can find information sets \(I \) for each \(i = 1, \ldots, I \); and (ii) the sets \(S^b(1), \ldots, S^b(I) \) form a partition of \(S^b \): If Ann moves at the initial node, simply take \(I = 1 \). If Bob moves at the initial node, each of Bob’s choices at the initial node, leads to an information set. (Of course, some of these moves may lead to the same information set.) If the choice \(c \) leads to an information set of Bob’s, then we go one level further. Eventually, we reach a collection of information sets for Ann satisfying the desired properties.

Fix \(J \leq I \) so that \(Y^b \cap S^b(i) \neq \emptyset \) for all \(1 \leq i \leq J \) and \(Y^b \cap S^b(i) = \emptyset \) for all \(J < i \leq I \). For each \(i \leq J \), there is a measure \(\sigma^b_i \in \mathcal{M}^+(Y^b \cap S^b(i)) \) with \(\pi^a(s^a, \sigma^b_i) \geq \pi^a(r^a, \sigma^b_i) \) for all \(r^a \in Y^a \). Build \(\sigma^b \) so that, for each \(s^b \in Y^b \), \(\sigma^b(s^b) = \frac{1}{J} \sigma^b_i(s^b) \), where \(s^b \in S^b(i) \). It is
immediate that this defines a probability measure in $M^+(Y^b)$, and, moreover,

$$\pi^a(q^a, \sigma^b) = \frac{1}{J} \sum_{i=1}^{J} \pi^a(q^a, \sigma_i^b),$$

for each $q^a \in Y^a$. Therefore $\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b)$ for all $r^a \in Y^a$. This establishes that s^a is admissible with respect to $Y^a \times Y^b$. ■

Proof of Proposition 3.1. The result is immediate for $m = 0$. Assuming the result for $m \geq 1$ and applying Lemma 3.1 gives the result for $m + 1$. ■

4 No Relevant Convexities

Definition 4.1 Say r^a supports s^a with respect to $Y^b \subseteq S^b$ if there exists $\sigma^a \in M(S^a)$ such that

1. $r^a \in \text{Supp} \sigma^a$, and
2. $\pi^a(\sigma^a, s^b) = \pi^a(s^a, s^b)$ for all $s^b \in Y^b$.

Definition 4.2 An extensive-form game Γ satisfies No Relevant Convexities (NRC) if whenever r^a supports s^a with respect to some $Y^b \subseteq S^b$, then $\zeta(s^a, s^b) = \zeta(r^a, s^b)$ for each $s^b \in Y^b$.

The term NRC is a strengthening of No Relevant Ties, due to Battigalli (1997). (An NRC game satisfies No Relevant Ties.)

Proposition 4.1 Fix an extensive-form game Γ satisfying NRC. Then $\hat{\Gamma}_m^a \times \hat{\Gamma}_m^b = \hat{\Gamma}_m^{+,a} \times \hat{\Gamma}_m^{+,b}$ for all m.

The proof will make use of the following implication of NRC.

Lemma 4.1 Fix an extensive-form game Γ satisfying NRC and some $Y^a \times Y^b \subseteq S^a \times S^b$. Then the following are equivalent:

1. The strategy s^a is undominated with respect to $Y^a \times Y^b$.
2. There exists $\sigma^b \in M(Y^b)$ with
 1. $\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b)$ for all $r^a \in Y^a$;
(b) if \(r^a \in Y^a \) satisfies \(\pi^a(r^a, \sigma^b) = \pi^a(s^a, \sigma^b) \), then \(\zeta(r^a, s^b) = \zeta(s^a, s^b) \) for every \(s^b \in \text{Supp} \sigma^b \).

Proof. Certainly (b) implies (a) (for any game). We will show (a) implies (b).

Suppose \(s^a \) is undominated with respect to \(Y^a \times Y^b \). Then, \(s^a \) must be admissible with respect to \(Y^a \times Z^b \) for some \(Z^b \subseteq Y^b \). Lemma D.4 in Brandenburger, Friedenberg and Keisler (2008), we can find a \(\sigma^b \in M^+(Z^b) \) so that: \(r^a \) supports \(s^a \) with respect to \(Z^b \) if and only if \(\pi^a(r^a, \sigma^b) \geq \pi^a(q^a, \sigma^b) \) for all \(q^a \in Y^a \).

Certainly \(\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b) \) for all \(r^a \in Y^a \). Suppose there is some \(r^a \in Y^a \) with \(\pi^a(s^a, \sigma^b) = \pi^a(r^a, \sigma^b) \). Then, \(r^a \) supports \(s^a \) with respect to \(Z^b = \text{Supp} \sigma^b \). So, by NRC, \(\zeta(s^a, s^b) = \zeta(r^a, s^b) \) for each \(s^b \in \text{Supp} \sigma^b \). ■

Proof of Proposition 4.1. The proof is by induction on \(m \). The result is immediate for \(m = 0 \). Assume the result holds for \(m \geq 1 \). By the induction hypothesis, \(\hat{\Gamma}^+_{m+1} \subseteq \hat{\Gamma}^+_m \times \hat{\Gamma}^+_m \). We will show that \(\hat{\Gamma}^+_{m+1} \subseteq \hat{\Gamma}^+_m \times \hat{\Gamma}^+_m \).

Fix \(s^a \in \hat{\Gamma}^+_m \). Let \(\hat{H} \) be the family of information sets \(h \in H \) allowed by \(\{ s^a \} \times \hat{\Gamma}^+_m \).

It suffices to show that, for each \(h \in \hat{H} \), \(s^a \) is admissible with respect to \(\hat{\Gamma}^+_m \). If so, the result follows from the induction hypothesis.

Suppose not. Then, there is an information set \(h \in \hat{H} \) such that \(s^a \) is inadmissible with respect to \([\hat{\Gamma}^+_m \cap S^a(h)] \times [\hat{\Gamma}^+_m \cap S^b(h)] \). In particular, pick \(h \) so that, for each \(i \in \hat{H} \) the following holds: For each \(i \in \hat{H} \) with \(S(i) \subseteq S(h) \), \(s^a \) is admissible with respect to \([\hat{\Gamma}^+_m \cap S^a(i)] \times [\hat{\Gamma}^+_m \cap S^b(i)] \).

Since \(s^a \in \hat{\Gamma}^+_m \), \(s^a \) is undominated given \([\hat{\Gamma}^+_m \cap S^a(h)] \times [\hat{\Gamma}^+_m \cap S^b(h)] \). By Lemma 4.1, there exists \(\sigma^b \in M(\hat{\Gamma}^+_m \cap S^b(h)) \) with

1. \(\pi^a(s^a, \sigma^b) \geq \pi^a(r^a, \sigma^b) \) for all \(r^a \in \hat{\Gamma}^+_m \cap S^a(h) \);
2. if \(r^a \in \hat{\Gamma}^+_m \cap S^a(h) \) satisfies \(\pi^a(r^a, \sigma^b) = \pi^a(s^a, \sigma^b) \), then \(\zeta(r^a, s^b) = \zeta(s^a, s^b) \) for every \(s^b \in \text{Supp} \sigma^b \).

We break the proof into two cases.

Case 4.1 Ann moves at \(h \).

The choice made by \(s^a \) at \(h \) leads to a new information set, viz. \(i \). By construction, \(S^a(i) \subseteq S^a(h) \) and \(S^b(i) = S^b(h) \). (Here we use the fact that each non-terminal node has at least two outgoing branches.) So, by construction, \(s^a \) is admissible with respect to \([\hat{\Gamma}^+_m \cap S^a(i)] \times [\hat{\Gamma}^+_m \cap S^b(i)] \). Now note that, by property (ii), if \(r^a \in \hat{\Gamma}^+_m \cap S^a(h) \) and \(\pi^a(r^a, \sigma^b) = \pi^a(s^a, \sigma^b) \), then...
Case 4.2 Bob moves at h.

Bob’s moves at this information set can lead to information sets $1, \ldots, I$. Note, $S^b(1), \ldots, S^b(I)$ forms a partition of $S^b(h)$ and $S^a(i) = S^a(h)$ for all $i = 1, \ldots, I$. Order the information sets so that $\hat{\Gamma}_m^b \cap S^b(i) \neq \emptyset$ if $1 \leq i \leq J$ and $\hat{\Gamma}_m^b \cap S^b(i) = \emptyset$ if $J < i \leq I$. For each $i = 1, \ldots, J$, there exists $\sigma_i^b \in \mathcal{M}^+(\hat{\Gamma}_m^b \times S^b(i))$ such that $\pi^a(s^a, \sigma_i^b) \geq \pi^a(q^a, \sigma_i^b)$ for all $q^a \in \hat{\Gamma}_m^a \cap S^a(h)$. Build $\sigma^b \in \mathcal{M}^+(\hat{\Gamma}_m^a \cap S^b(h))$ so that $\sigma^b(s^b) = \frac{1}{J} \sigma_i^b(s^b)$ where $s^b \in S^b(i)$. Then

$$
\pi^a(q^a, \sigma^b) = \frac{1}{J} \sum_{i=1}^{J} \pi^a(q^a, \sigma_i^b)
$$

for any $q^a \in \hat{\Gamma}_m^a \cap S^a(h)$. It follows that s^a is admissible with respect to $[\hat{\Gamma}_m^a \cap S^a(h)] \times [\hat{\Gamma}_m^b \cap S^b(h)]$, again a contradiction. ■

5 Conditioning on Own vs. Others’ Information Sets

Finally, we show:

Proposition 5.1 For each m, $\Gamma_m^a \times \Gamma_m^b = \hat{\Gamma}_m^a \times \hat{\Gamma}_m^b$.

Proof. The proof is by induction on m. Certainly, the claim holds for $m = 0$. We suppose that it holds for $m \geq 1$ and show that it also holds for $m + 1$. To do so, note that, by the induction hypothesis, $\hat{\Gamma}_{m+1}^a \times \hat{\Gamma}_{m+1}^b \subseteq \Gamma_{m+1}^a \times \Gamma_{m+1}^b$. We show $\Gamma_{m+1}^a \times \Gamma_{m+1}^b \subseteq \hat{\Gamma}_{m+1}^a \times \hat{\Gamma}_{m+1}^b$.

Fix some $s^a \in \hat{\Gamma}_m^a$ and suppose $s^a \not\in \Gamma_{m+1}^a$. Then, using the induction hypothesis, there exists some $h \in H$ so that s^a is dominated given $[\Gamma_{m+1}^a \cap S^a(h)] \times [\hat{\Gamma}_{m+1}^b \cap S^b(h)]$. If $h \in H^a$, then $s^a \not\in \Gamma_{m+1}^a$, establishing the result. So, we suppose that $h \in H^b$ and choose h so that there does not exist some $i \in H^b$ so that $S(i) \subseteq S(h)$ and s^a is dominated given $[\Gamma_{m+1}^a \cap S^a(i)] \times [\hat{\Gamma}_{m+1}^b \cap S^b(i)]$.

Since s^a is dominated given $[\Gamma_{m+1}^a \cap S^a(h)] \times [\hat{\Gamma}_{m+1}^b \cap S^b(h)]$, there exists some $\sigma^a \in \mathcal{M}(\Gamma_{m+1}^a \cap S^a(h))$, so that

$$
\pi^a(\sigma^a, s^b) > \pi^a(s^a, s^b)
$$
for all \(s^b \in \Gamma^b_m \cap S^b(h) \neq \emptyset \). It follows that we cannot have each choice of Bob’s at \(h \) leading to a terminal node. Consider a choice of Bob’s that leads to a non-terminal node and so to a new information set \(i \). We have that \(S^a(i) = S^a(h) \) and \(S^b(i) \subset S^b(h) \). (Here we use the fact that each non-terminal node has at least two outgoing branches.) Thus, \(\sigma^a \in \mathcal{M}(\Gamma^a_m \cap S^a(i)) \) with

\[
\pi^a(\sigma^a, s^b) > \pi^a(s^a, s^b)
\]

for all \(s^b \in \Gamma^b_m \cap S^b(i) \). By the choice of \(h, i \in H^a \). It follows that \(s^a \not\in \Gamma^a_{m+1} \), establishing the result. ■

References

