Why the grass is greener on the other side
Behavioral evidence for an ambiguity bonus in human exploratory decision-making

Robert C. Wilson, Anda Geana, John M. White, Elliot A. Ludvig & Jonathan D. Cohen

Introduction

How does ambiguity affect exploratory decision making?
The grass is greener, but the unknown is scary

Task

• Subjects choose between two one armed bandits
• At start of game four “example” rewards are shown
• Subject makes choice and gets immediate reward feedback
• Next trial begins

Results

Three horizon conditions

Horizon = 1
Horizon = 6
Horizon = 11

Two ambiguity conditions

Equal
Different

Choice curves (n = 33)

horizon 1
horizon 6
horizon 11

Model fits

ambiguity bonus
noise variance
bias

Model

Values

\[\Delta V = \Delta \mu + a \Delta k + b + n \]

\(\Delta \mu \) difference in means
\(\Delta k \) difference in information (-1, 0 or 1)
\(a \) ambiguity bonus
\(b \) bias
\(n \) random noise, variance \(\sigma_n \)

Choice probabilities

\[p = \frac{1}{1 + \exp(\beta(\Delta \mu + a \Delta k + b))} \]

\(\beta \propto \frac{1}{\sigma_n} \)

Side notes

Learning curves

Conclusions and future work

• Exploration in humans is driven by
 • an ambiguity bonus that is consistent with directed exploration of optimal models
 • adaptive noise consistent with undirected exploration of practical models
• In the brain we expect to see
 • Ambiguity bonus in value system (VS, OFC, etc…)
 • Adaptive noise in LC

Why only focus on first choice?