A unifying theory of explore-exploit decisions

Robert C. Wilson and Jonathan D. Cohen

Summary

How do we solve the explore-exploit dilemma?

Two strategies [Wilson et al. JEP:G 2014]:
- Directed exploration – choose unknown options
- Random exploration – choose randomly

Here we show how directed and random exploration arise naturally from **deep exploration** [van Roy 2015].

Task

Choose between two slot machines to maximize reward

Rewards come from Gaussian distributions with **unknown means**

Before first choice, participants see **example plays**.

Precisely controls what they know

They then play out to end of time **horizon**

First **infer** distribution over mean of each option \(p(m_i | r_{1,1}) \)

Next, **sample** mean of each option: \(s_i \sim p(m_i | r_{1,1}) \)

Then **simulate** possible futures assuming means are \(s_i \)

e.g. simulation after choosing left first ...

Expt 1: Uncertainty manipulation

Horizon = 5; Uncertainty = [1 1], [1 2], [1 3], [2 2], [2 3], [3 3]

Total value of choosing option \(i \) is average over multiple simulations, \(Q_i = \langle q_i \rangle \)

Expt 2: Horizon manipulation

Horizon = 1, 2, 4, 8, 12; Uncertainty = [1 3]

Theory

Simulate future **rewards** based on simulated choice \(r \sim p(r | s_i) \)

Simulate future inference based on simulated rewards

Simulate future decisions assuming greedy choice

For each simulation, **value** of choosing option \(i \) on first choice is sum of simulated rewards, \(q_i = \sum_i r_i \)

Focus on **first choice**

Two parameters:
- Information bonus, \(\theta \)
- Decision noise, \(\sigma \)

Directed exploration scales with **difference in uncertainty**

Random exploration scales with **total uncertainty**

Directed exploration **asymptotes** with horizon

Random exploration does not asymptote with horizon