
Astr 545 – Astrophysics of Stars and Accretion – Fall 2015

Homework #1
Due: Tues. Sept. 8, 1:59PM in class, or earlier in SO mailbox (Youdin)

1. Material Derivatives of Fluid:
Consider a Eulerian description in terms of position x and time, t, and a Lagrangian de-
scription in terms of initial position x◦ and time t′. Time is the same in both frames, t′ = t
and the current position of a fluid element in the Lagrangian frame is x′(t′,x◦). Any fluid
property F must have the same value in both descriptions at the same position and time:
F (x, t) = F (x′(t′,x◦), t

′) = F (x◦, t
′).

(a) Use the chain rule and the fluid velocity u to express the Lagrangian or material deriva-
tive in Eulierian coordinates

DF

Dt
≡ ∂F

∂t′

∣∣∣∣
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∂F
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∂x
, (1)

explaining all steps. Recall that the chain rule for two coordinate systems, yi and y′i is
∂f/∂yi = (∂f/∂y′k)(∂y

′
k/∂yi) with summation over k.

(b) Now we consider the material derivative of a volume integral

D
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∫
V (t)

F (x, t)dV (2)

where the volume of the boundary moves with the fluid. From calculus, Leibniz’s theorem
gives

d

dt

∫
V (t)

F (x, t)dV =

∫
V

∂F

∂t
+

∫
A

FdA · uA (3)

where the final term is a intgral over the surface area, A, of the volume, V and the boundary
moves at speed uA. Use the fact that the boundary moves at the fluid velocity and Gauss’s
theorem to show that
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(c) Now use the continuity equation for the density ρ to show that

D

Dt

∫
V

ρG(x, t)dV =

∫
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ρ
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Convince yourself (and show) that since the volume is arbitrary in size and shape (but
must move with the fluid), that ρDu/Dt = f is the correct momentum equation, where
f is the force per unit volume on the fluid. [Note (but you do not need to show) that
part (b) shows that the momentum equation can also be written in “conservation form” as
∂(ρui)/∂t+ ∂/∂xj(ρujui) = fi.]



2. Rotating Frame: Consider an inertial frame (I) and a rotating frame (R) with uniform
angular velocity Ω.

(a) A vector A that is fixed in the rotating frame will rotate in the inertial frame (unless
perfectly aligned so that A×Ω = 0). Show that the inertial observer sees(

dA

dt

)
I

= Ω ×A (6)

It helps to consider an angle θ between Ω and A (so that |Ω×A| = ??) and an infinitesimal
rotation by ∆φ. Also note that the unit vector, n̂ describing the direction of change of A is
perpendicular to bothΩ andA (sinceA isn’t changing in length). Thus n̂ = Ω×A/|Ω×A|.
(b) Now consider a general vector B which may change in the rotating frame as well. Show
that the changes in the inertial and rotating frames are related by(

dB
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)
I

=

(
dB

dt

)
R

+Ω ×B (7)

Hint: express B = Bj îj in terms of Cartesian unit vectors îj in the rotating frame, applying
the result from (a) to the rotation of these unit vectors in the inertial frame.

(c) To derive the momentum equation in a rotating frame, first show that fluid velocities
transform as

uI = uR +Ω × x (8)

in terms of the position vector x of a fluid element. Then show that the rate of change of
velocity transforms as(
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)
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+Ω × uI (9a)

=
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+ 2Ω × uR +Ω × (Ω × x) (9b)

For a momentum equation in an intertial frame that is

ρ
Du

Dt
= −∇P − ρ∇φ+ µ∇2u (10)

derive the corresponding equation in a rotating frame. Hints: Are spatial gradients affected
by the choice of reference frame? Showing that the viscous term is invariant can be derived
mathematically or argued physically.

(d) The form of the continuity and energy equations is usually unaffected by the transfor-
mation to a rotating frame. This invariance occurs because (i) the divergence of velocity,
∇ · u and (ii) the material derivative of any scalar, e.g. Dρ/Dt, are both invariant. Argue
that both are true physically and then show it mathematically. For (ii) show that (unprimed
coordinates are inertial and primed are in the rotating frame)

∂P

∂t
=

∂P

∂t′
− (Ω × x′) · ∇′P (11a)

u · ∇P = (u′ +Ω × x′) · ∇′P (11b)
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One way (others are possible) to derive Equation (11) is to apply the chain rule with Ω = Ωẑ
so that x′ = x cos(Ωt) + y sin(Ωt), y′ = .... Given (i) and (ii) you can (and should) show
trivially that the continuity equation is invariant.
(e) When monsoon storms arrive in Tucson from the South, does the Coriolis force deflect
them towards the East or West? Not all storms follow this simple expectation. Come up
with at least one reason why.

3. Polytropes and the Chanrasekhar Mass:
Consider a polytropic equation of state (EOS) with

P = Kργ ≡ Kρ1+1/n.

(a) Give order of magnitude estimates of the central density and pressure in terms of G,M
and R; the grav. constant, total mass and radius. Use these estimates to derive a relation
between mass and radius, retaining K and G. [Ignore for now the order unity coefficients
given by exact solutions to the structure of polytropes, but note that these estimates will
fail for n ≥ 5 because such polytropes have infinite radii.]

(b) Briefly (a few words is enough for your graders) describe the significance of the cases
n = 0, 3/2, 3. Why does n = 3/2 (γ = 5/3) describe both degenerate (radius decreasing with
increasing mass) and more general behavior where radius can increase with mass? I.e. what
is different about the polytropic index K.

(c) To order of magnitude, calculate the limiting Chandrasekhar mass in terms of funda-
mental constants. You need to use K, i.e. P (ρ), for an ultra relativistic sea of degenerate
electrons. Express your final result in terms of the Planck mass mPl =

√
h̄c/G and the

mean mass per electron µemp. (Technically mp should be the atomic mass unit, but is
roughly equal to the proton, or neutron, mass). How close is this dimensional estimate to
the accepted value of Mch = 1.46(2/µe)

2M�?

3


