
Astr 545 – Astrophysics of Stars and Accretion – Fall 2015

Homework #2
Due: Tues. Sept. 22, 1:59PM in class, or earlier in SO mailbox (Youdin)

1. Surface vs. Observed Flux:

(a) Review of Surface Flux:
(i) What is the flux per unit frequency, Fν , at the surface of an object with only outgoing
radiation, i.e. no irradiation. Assume that the specific intensity, Iν(µ) is axisymmetric and
depends only on µ = cos(θ) at the surface, where θ is the angle between the radiation and the
outward unit normal. (ii) Apply this result to the case of outgoing isotropic radiation, which
includes the case of a blackbody, Iν = Bν(T ) the Planck function. (iii) For a blackbody
calculate the net (frequency integrated) flux in terms of σ and T . (iv) What is the definition
of effective temperature for an arbitrary net flux F?

(b) Observed Flux, Basics:
Consider an observer at a distance d from (the center of) some luminous object From the
definition of specific intensity show that:

dF obs
ν = IνdΩ (1)

where Iν is the specific intensity at the object’s surface, in a direction pointed towards the
observer, dΩ is the solid angle subtended by an element of the emitting surface, as seen by
the observer and dobs

ν is the incremental flux received by the observer from that element.
Assume that intervening space is empty.

Figure 1: When using this figure, you need to figure out what the typo π2
∗ means. Your

answer should also clarify the orientation of dS relative to the observer or surface.



(c) Observed Flux, Isotropic Case:
Assume (here and part d) that the emitting object is a sphere with radius R∗. For an isotropic
flux, simply integrate over solid angles to get the total observed flux (per frequency). Express
your final result in terms of Fν (at the surface) R∗ and d.

(d) Observed Flux, Anisotropic Axisymmetric Case:
Again calculate F obs

ν in terms of Fν at the surface, but this time allow for the angular
variation of Iν(µ) across the surface. For this derivation, assume that the observer is far
away, so that all rays from the surface of the star to the observer can be approximated as
parallel. In this case, the observer sees rays from µ = 1 all the way to µ = 0. The drawing
from Mihalas is useful for visualizing and calculating the area and solid angle elements to be
integrated over. You should end up with the same final result as part (c), so the issue here
is to justify each step.

2. SED of a grey atmosphere vs. a blackbody:
In class, we worked out some properties of a grey atmosphere, including the relation

T (τ) = Teff

(
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4
+
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)1/4

≡ Tefff(τ) (2)

and that the specific intensity at the surface of a grey atmosphere in LTE can be calculated
as

Iν =

∫ ∞
0

Bν [T (τ)] exp[−τ/µ]
dτ

µ
, (3)

where the (matter) LTE limit of the source function with no scattering Sν = Bν holds. Since
the atmosphere is grey, the optical depth is frequency independent.

The goal of this problem is to compare the SEDs (spectral energy distributions) of a
blackbody and a grey atmosphere. We will follow the convention of plotting SEDs as νFν
(and not simply Fν) since this quantity gives the flux per logarithmic interval of frequency,
νFνd ln ν. This problem will require performing numerical integrals. You can do these
integrals with any software you choose. Options include python (scipy.integrate module,
with quad, dquad, etc. functions), Mathematica (NIntegrate function), Numerical Recipes
or writing your own integrator in your language of choice. Include your code as a part
of the solution to this problem, (either printed or as a working link) whether this code
is a script or a notebook. You do not need to include plotting scripts.

(a) Blackbody SED and non-dimensionalization.
You should have already shown that Fν = πBν(T ) above. For this subproblem, we merely
introduce the non-dimensional variables which make plotting and numerical calculations
easier. The dimensionless frequency is

x ≡ hν/(kTeff) (4)

(and Teff = T simply for a blackbody). We also normalize the SED as the quantity
νFν/(σT

4
eff). For a blackbody, show that

νFν
σT 4

=
15

π4

x4

exp(x) − 1
(5)
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Verify that the net flux is ∫ ∞
0

νFν
dx

x
= σT 4 (6)

justifying the LHS above.

(b) Starting with equations 2 and 3 show that the SED for a grey atmosphere can be written
as the double integral

νFν
σT 4

eff

(x) =
30x4

π4

∫ 1

0

dµ

∫ ∞
0

dτ

{
exp(−τ/µ)

exp[x/f(τ)] − 1

}
(7)

(c) Perform the integral in (b) numerically for a dense sampling of x values between 0 and
20. Note that x = 0 will not evaluate directly (though clearly Fν = 0 here). More seriously,
a divergence occurs at µ = 0 and a computer can’t directly integrate to τ = infinity. Starting
with a very small (but non-zero) µ and ending with a large (but not-infinite) τ gives accurate
results. Experiment as needed to be sure that this choice isn’t appreciably affecting your
results (and see d below).

Plot the results νFν/σT
4
eff vs. x = hν/(kTeff). Overplot the SED for the blackbody case

(where T = Teff). Also make a plot of the difference of the SEDs (grey minus blackbody).
Attempt to explain the differences physically.

(d) Show that the total (frequency integrated) flux Fr obeys

Fr

σT 4
eff

=
30

π4

∫ ∞
0

dx

∫ 1

0

dµ

∫ ∞
0

dτ

{
x3 exp(−τ/µ)

exp[x/f(τ)] − 1

}
(8)

We know from the theory of grey atmospheres that this ratio is unity. How close to unity
can your numerical integration get, as 1 − Fr/(σT

4
eff)?

3. Eddington Luminosity:

(a) Show that if the radiation pressure satisfies

−dPrad/dr > ρg (9)

then the luminosity exceeds the Eddington luminosity, LEdd. Assume that radiative diffusion
holds up to the photosphere. Does the “derived” result (which is not rigorous) agree with
the standard expression? Explain why this derivation is intuitive.

(b) For an electron scattering opacity, compute the LEdd/L� in terms of the stellar mass in
Solar units.
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