
Chapter 1

The C Programming
Language

In this chapter we will learn how to

• write simple computer programs using the C programming language;

• perform basic mathematical calculations;

• manage data stored in the computer memory and disk;

• generate meaningful output on the screen or into a computer file.

The C programming language was developed in the early 1970’s by Ken Thomp-
son and Dennis Ritchie at the Bell Telephone Laboratories. It was designed and
implemented in parallel with the operating system Unix and was aimed mostly as
a system implementation language[1]. It, nevertheless, evolved into one of the most
flexible and widely used computer programming languages today.

In 1989, the American National Standards Institute (ANSI) adopted a document
that standardized the C language. The particular version of the language that it
describes is widely referred to as ANSI C or C89. This document was adopted
in 1990 by the International Organization for Standardization[1] (ISO) as C90 and
was later expanded to the current standard, which is often referred to as C99 .

The C language consists of a small set of core commands and a large number of
library functions that can be incorporated in a program, if necessary. One can find
many excellent books that discuss the C language in detail, starting from the first
book The C Programming Language by B. W. Kernighan and D. M. Ritchie[2]. This
book describes ANSI C and remains today one of the easiest texts on the subject.
In this chapter, we will cover the most basic of the core commands of the language,
as well as those library functions that are useful in developing programs that involve
scientific computations.

1.1 The first program

It is a tradition in the culture of C programming that the first program compiled and
executed by a new student of the language is one that prints on the screen the happy
message “Hello World!”[2]. This program, which is shown bellow, demonstrates the

1-1

1-2 CHAPTER 1. THE C PROGRAMMING LANGUAGE

Developing the C Programming Language

The developers of the C
programming language,
Ken Thompson (sitting)
and Dennis Ritchie, in front
of a PDP-11/20 computer
at the Bell Labs, in 1972
(Scientific American, March
1999). The PDP-11/20
computer could manage
64 Kbytes of memory at any
given time

basic structure of all programs written in C.

#include <stdio.h> // incorporates libraries
// for input/output

int main(void) // begin main program
{

printf(‘‘Hello World!\n’’); // print on screen Hello World!

return 0; // normal end of program
}

The first command that starts with the ‘#’ sign is not an actual C command but
rather an instruction to the compiler. Such instructions are called preprocessor
directives. In this particular case, the directive

#include <stdio.h>
instructs the compiler to incorporate all those commands that are necessary for
input and output of data. In C lingo, this directive instructs the compiler to in-
corporate the library of functions for the standard input/output. Almost all C
programs start with this directive, since they will require some input and will pro-
duce some output that will need to be communicated to the user!

The second command,
int main(void)

identifies the beginning of the main program. We will postpone the discussion of the
syntax of this command until later, when we will study the definition of functions
in C. For now, it suffices to say that the main program is the set of commands
that appear between two braces (symbols ‘{’ and ’}’) immediately following this
identification.

The first command of the main program,
printf(‘‘Hello World!\n’’);

prints on the screen the message
Hello World!

The command name is printf and stands for print formatted . The command
printf takes a number of arguments, which are enclosed in parentheses. In
this particular example, the only argument is the string of characters “Hello

1.1. THE FIRST PROGRAM 1-3

World \n”, which is printed on the screen. All character strings in C are enclosed
in quotes, which are not part of the string themselves. They denote its beginning
and end and are not printed on the screen. The last part of the character string
is the control character \n, which stands for newline. It also does not appear
on the screen, but is there to instruct the program to begin the next output in the
following line on the screen.

The final command on the program,
return 0;

identifies the point where the program reaches its normal end and control is returned
to the operating system. The number 0 signifies the fact that the program is
finishing normally, without any error messages.

Most lines in this example end with text in plain English that is preceded by the
symbols //. These are comments to help the programmer understand the structure
of the program and are not commands of the language. In fact, the compiler ignores
anything from the symbols // to the end of the line. This construction, which is
actually borrowed from C++, is one of the ways that allows a C programmer to
insert explanatory comments in the program. In a different construction, comments
are inserted between the symbols * and *\, as in the following example:

* This is a comment ...
... and can continue to a second line *\

This second construction allows for comments to occupy more than one lines.
Contrary to several other languages, there are very few and flexible rules in C

that dictate the way a program needs to be typed. For example, empty lines or
spaces are completely ignored by the compiler. The example program discussed in
this paragraph can also be typed as

#include <stdio.h>
int
main(void) {printf(‘‘Hello World!\n’’)
;return;}

with the same result. This gives a programmer the flexibility to format the program
in a way that elucidates its structure, flow, and sequence of commands. However,
this flexibility also necessitates a method to instruct the compiler that the current
command ended and that a new command is about to start. This is achieved by
the semi-colon ‘;’, which appears at the end of the two commands in the main
program in our example. Note that preprocessor directives (such as the #include
command) do not end with semi-colons. Moreover, there is no semi-colon after
the command int main(void) because the following set of lines that are enclosed
in braces is considered part of the same command. Finally, there is no need for
a semi-colon at the end of a block of commands enclosed in braces, because it is
implicitly assumed to be there.

Compiling and executing this program depends on the operating system and the Compiling and
Executing a C ProgramC compiler used. Let us assume, as an example, that we have used an editor to type

the program and save it in a file called hello.c. We use the suffix .c to denote
that this file contains the source of a C program, i.e., the set of C commands that
need to be compiled. In order to convert this program into an executable file
we will invoke the GCC compiler of the GNU project[3] running under the LINUX
operating system. In this case, we will type the command

gcc hello.c -o hello

1-4 CHAPTER 1. THE C PROGRAMMING LANGUAGE

The International Obfuscated C Code Contest

The C language offers an unprecedented flexibility both in the construction of
a computer program and in the presentation of its source code. Since 1984,
the International Obfuscate C Code Contest[5] has been rewarding the most
“obscure/obfuscated C program, which shows the importance of programming
style, in an ironic way”. The program below, which was one of the winning
entries in 1995, asks the user for an integer and calculates its factorial (you
should try it!). Albeit legitimate, this is clearly not the way to write a computer
program that is easy to understand or that allows for easily spotting potential
mistakes.

�(+")1#$��/0#(,�'�

�#$%(+$�)��)��3����
�#$%(+$�))��%,.
�#$%(+$�))����(%
�#$%(+$�)�)��1+/(&+$#
�#$%(+$�)����/0.1"0
�#$%(+$�)))���/',.0
�#$%(+$�))��)�),+&
�#$%(+$�))�))�-10"'!.
�#$%(+$�)�)�)�)	�)�*!)),"�/(4$,%�)����))))�		�)�)))�)����)�))�)�����
�#$%(+$�)�))��
)))))���)�))�������)�))��������
�#$%(+$�)�)))�))�����)��)))�)	5)�)�)�)��)))�)	�)��)))�)�))�)��)��7�
)))))��)��)��)))�)	�)))�))����
�#$%(+$�))))�����

���)����))))��5
���)����))))��

������)))�)�
))�)����������)�)�����������������������)))���)))��
������))))��7�*!(+�������	5)����))))�����������������
))���
)�)�

������)���
))�)��
����*!)),"���	���)�)���������������))��)�)�))��
������))��)�)���))���)�)�)��)))���
)))��
������������)))))��))��)
�����������)������))�))���0���	�)�����	�2)�����������)� ���	���)
������	�/"!+%���#���)	�)�)�)�)�)	�)�)�)�))�����������	��)��)�)	�
������)))�)�)�)))�������������)��)�))��)����������������)����)�
��������)��	5)��))������������)))�����))�)�����������))���)�)		�
������)))��)))))���������������)�)�)�	�)))����������))��)�))���
������	�))���))�)��������������)))�)66)��)����������
)))��	5)�))
��������)��

)))�����������������)�))��))���������������))�))))	5
������)�)))�)))�����������������))�)��))�)����������)))�)	�)))�
������77))���)�))���������������	5)�))��))��������������))��))))	
������5�)�)))7�7�
��������������)))))�)��)�7
������))��)��))�����������������	��)�))))	��
�������)��)))��)�����������������)��)	���)	���������))����)��)��
������)��))�)��)���������������))))	5))��)���������)�����)�
��������))	-.(+0%����������������))	���))���	�������������#���))�
�����������+���#�	��������������	����#��)�����������)))�)��	���7
���))�))���	��7

This invokes the application gcc to compile the C program that is stored in the file
hello.c and stores the output of the operation in the file hello. Note that these
two filename have to be distinct. Had we typed

gcc hello.c -o hello.c
the result of the compilation would have overwritten the C program and we would
not be able to make any changes to it. If, on the other hand, we had omitted the
last part of the command, i.e., if we had typed

gcc hello.c
the result of the compilation would have been stored in the default file a.out.

In order to execute the compiled program, we need to simply type
./hello

where the two symbols ./ preceding the name of the executable file simply instruct
the operating system that the file exists in the current directory. The result of this
command is

Hello World!

1.2. MANAGING SIMPLE DATA WITH C 1-5

1.2 Managing Simple Data with C

One of the most important operations performed by a computer is the storage and
manipulation of data. For archival purposes, data are stored in external devices,
such as magnetic disks and laser disks, which retain the information even after the
power of the computer has been turned off. However, in order for the computer to
manipulate the data, they need to be stored in its random-access memory (RAM),
which the microprocessor has a direct access of.

Within the C language, different types of data are stored and manipulated in Data Types
different ways, so that the minimum amount of memory is utilized with the maxi-
mum efficiency. Of all the data types recognized by the compiler, we will consider
here only the four that are the most useful for mathematical computations. They
are:

Type int

float

double

char

integer numbers; ANSI C requires that they cover at least the
range -32767 to 32767
fractional numbers; ANSI C requires that they have at least 6
significant digits and they cover the range from 10−37 to 1037,
with both signs
fractional numbers with at least 10 significant digits and a larger
possible range of values
single characters

Data of type int can be any integer number within the allowed range that does
not include a decimal point. For example, the numbers

32, -18, 0, 13756
are all type int. However, the numbers

12.8, 32.0, 0.0
are not, even though, mathematically speaking, the last two numbers are integers!
Data of type float and double can be any number within the allowed range that
includes a decimal point. For example, the last three numbers can all be type float
or double. We will discuss in more detail the first three data types in Chapter 2,
where we will study the ways in which a computer stores numbers in its memory
and performs numerical calculations.

Choosing whether to use the type float or double in a program with scientific Programming
Tipcomputations depends on the number of data and calculations involved as well as

on the desired accuracy of the result. Data of type float are less accurate and
cover a smaller range of values, but require half the amount of memory to be stored
and calculations performed with them are typically faster than with data of type
double.

Data of type char can be any single character. For example, the following
’A’ ’B’ ’y’ ’z’

are all valid data of this type. Note that the single characters are enclosed in single
quotes. This is necessary for the language to distinguish between data of type
char and functions defined by the user that may have a name consisting of a single
character. Characters are stored in the computer memory as integer numbers using
a correspondence that was standardized in 1967 under the name of ASCII, which
stands for the American Standard Code for Information Interchange. The ASCII
table of characters and the integer number they correspond to is shown in Appendix
A. Characters 0–33 are not printed on the screen and mostly control the way text is
printed. For example, the control character \n that we saw in the previous section
corresponds to the integer number 13 in the ASCII table.

1-6 CHAPTER 1. THE C PROGRAMMING LANGUAGE

In a high-level programming language, such as C, we do not store data directlyVariables
to particular places in the computer memory. Instead, we define variables to which
we assign the values we want to store and leave the nasty job of manipulating the
computer memory to the compiler and the operating system.

A variable name can consist of any combination of the letters of the English
language, the digits, and the underscore ’_’ but it cannot start with a digit. As an
example, all the following are valid variable names

area, Mass_of_Electron, v_1
but

21_cross_section, +sign, a*
are not. Variable names cannot be any of the words reserved for C commands and
functions. For example, printf is not a valid variable name, because it is a C
command. Variable names are also case specific, which means that the variable
mass is different than the variable Mass. Finally, only the first few characters of
a variable name are recognized by the compiler and the remaining are ignored. In
ANSI C, only the first eight characters specify uniquely a variable. For example, the
variables mass_of_electron and mass_of_proton are indistinguishable in ANSI C,
because they share the same beginning eight characters. In later versions of the C
standard, a variable is uniquely specified by the first 31 characters of its name.

Howlong the name of a variable is affects neither the amount of memory occupiedProgramming
Tip by the compiled program nor the speed of execution. The variable name appears

only in the source code and is there to make the program easy to understand and
debug. It is, therefore, advantageous to use variable names that are self explanatory
rather than ones that are generic or obscure. For example, an appropriate name
for a variable to store the value of Planck’s constant is h_planck and not simply h,
since the latter can be easily misinterpreted to mean “height”. Also, a good name
for a variable to store the root of an algebraic equation is root and not simply x,
since the latter can be misinterpreted to mean the coordinate of a point along the
x-axis.

After choosing the name of a variable, we need to define the type of data it
will carry, i.e., int, float, double, or char, and let the language assign a unique
place in the computer memory where it will be stored. We achieve both functions
by declaring the names and types of variables to the compiler in the beginning of
the program. In the body of the program we can then assign data of the proper
type to the variables we have declared. The example program shown in the follow-
ing page, which calculates the area of a triangle, demonstrates the use of variable
declarations and assignments.

The first command in the main programDeclarations
and Assignments float area;

declares to the compiler that a place in memory should be reserved for data of type
float and the program will refer to this memory place with the variable name area.

Declarations of variables of the same type can be combined into a single com-
mand, as demonstrated by the second command in the main program

float height, base;
which declares two additional variables of type float. Finally, when declaring a
variable, we have the option of assigning its initial value, as in the following com-
mand

int sides=3;
This command declares that variable sides is of type int and assigns to it (i.e., it
stores in the corresponding memory space) the value 3.

1.2. MANAGING SIMPLE DATA WITH C 1-7

#include <stdio.h>

* Program to calculate the area of a triangle *\
int main(void)
{

float area; \\ declare float variable area
float height, base; \\ declare more float variables
int sides=3; \\ declare and initialize integer

\\ variable

height=2.5; \\ assign number 2.5 to height
base=3.5; \\ assign number 3.5 to base

area=0.5*height*base; \\ calculate the product
\\ 0.5*height*base
\\ and assign it to variable area

\\ print a message with the result
printf(‘‘The area of this shape with %d sides\n’’, sides);
printf(‘‘is %f\n’’, area);

return 0;
}

Because we have not initialized the values of the other two variables, height,
and base, it is important that we do so before we use them for the first time in the
program. We achieve this with the following two assignment commands

height=2.5;
base=3.5;

The equal sign (’=’) in these two commands simply means assign to and does not
carry the implications of the equal sign in mathematics. It might be easier to think
of the last two commands as the equivalent of

height←2.5;
base←3.5;

This apparently small distinction becomes really important in understanding as-
signments of the form

x=x+1.0;
where x is a variable of type float. In mathematics, this last command leads to a
contradiction, if viewed as an equation, because cancellation of x leaves 0=1, which
is never satisfied. However, if we view this command as

x←x+1.0;
then we can easily understand its use. It takes the current value stored in the vari-
able x, it increases it by one, and then stores the result again in the same variable
x.

Assignments are used to perform numerical calculations. This is shown in the
following command

area=0.5*height*base;
which calculates the area of the triangle as one-half times the product of its height
to its base and stores it in the variable area. Note the self-explanatory names of
the variables.

The next two commands in the main program print the result of the calculation
on the screen. In the first occasion,

printf(‘‘The area of this shape with %d sides\n’’, sides);

1-8 CHAPTER 1. THE C PROGRAMMING LANGUAGE

we find the specifier %d, which instructs the compiler to print at this point in
the output the variable sides, which is of type int and follows the double quotes.
Similarly, in the second occasion,

printf(‘‘is %f\n’’,area);
the specifier %f instructs the compiler to print at this point the variable area, which
is of type float and follows the double quotes. The output of these two commands
is

The area of this shape with 3 sides
is 8.75

Very large or very small numbers can be assigned to a variable in a compact form
using the scientific notation. In C, as in most computer languages, the syntax of the
scientific notation is a little different from the corresponding syntax in mathematics.
For example, Avogadro’s constant NA ≡ 6.022 × 1023 mol−1 can be assigned to a
C variable with the line of code

float N_Avogadro=6.022e23; \\ in mol^{-1}
Note that the symbol e, which stands for exponent, takes the place of the symbols
×10 in the usual scientific notation in mathematics. For very small numbers that
require a negative power of ten, the syntax is very similar, with a negative sign
preceding the exponent. For example, Planck’s constant h = 6.627×10−34 m2 kg s−1

can be assigned to a C variable with the command
float h_Planck=6.627e-34; \\ in m^2 kgr s^{-1}

In a program that involves scientific computations, we often wish to store aConstants
physical constant in a place in the computer memory and use it throughout the
algorithm. For example, in a computer program that deals with the radioactive
decay of 14C to 14N we might want to store the halftime of this reaction, which is
approximately equal to 5730 years. We can achieve this by declaring a variable and
assigning the value of the halftime to it, e.g.,

double halftime_C14=5730.0; \\ halftime in years
However, the value of this variable will not change throughout the program. C
allows for a different declaration of such constants, which improves the speed of
execution. For the example discussed above, the declaration would be

const double halftime_C14=5730.0; \\halftime in years
We can achieve the same result also using, in the beginning of the program, the
preprocessor directive

#define halftime_C14 5730.0 \\ halftime in years
Note that there is no equal sign between the name of the constant and its value.
Moreover, there is no semicolon at the end of this line, because this is not a C com-
mand but rather an instruction to the compiler. During compilation, the compiler
literally replaces all occurrences of halftime_C14 in the source code with 5730.0.

A second advantageous use of constants in a program that involves scientificProgramming
Tip computations is in identifying various parameters of the numerical algorithm that

may be different between different applications. These may include the limits of the
domain of solution of an equation, the number of equations solved, or the accuracy
of the solution. For example, we can write a general algorithm that solves a system
of Neq linear equations and precede the C program by a compiler directive such as

#define Neq 3
which specifies that in this particular occasion the system involves only 3 linear
equations. If, in a different application, we need to solve a system of 5 linear equa-
tions, we will only need to change the directive to

#define Neq 5
and leave the rest of the program unchanged. This technique improves the readabil-

1.3. FORMATTED INPUT AND OUTPUT 1-9

ity of the program and reduces the chances of introducing inadvertently mistakes
to an algorithm that was borrowed from a different application.

1.3 Formatted Input and Output

As we saw in the previous section, the command printf controls the output of a C Output
on the Screenprogram on the computer screen. The general syntax of the command is

printf(‘‘control string’’, variable1, variable2, ...)
The control string is enclosed in double quotes and consists of printable characters,
such as Hello World!, of specifiers, such as %d and %f, and of control characters,
such as \n. For each specifier, there is a variable of the corresponding type following
the control string.

The specifiers in the control string determine the position and format of printing Specifiers
variables of different types. The most useful ones for programs that involve scientific
computations and the data types they correspond to are

Specifier %d
%f
%e
%g
%c

data of type int
data of type float or double in decimal notation
data of type float or double in scientific notation
equivalent to %f or %g depending on the value of the number
data of type char

We have already discussed the use of the specifiers %d and %f in the previous
section. As another example, the lines of code

int Neq=3;
float pi=3.1415927;
printf(‘‘The number of equations is %d\n’’,Neq);
printf(‘‘and the value of pi is %f\n’’,pi);

produce the output
The number of equations is 3
and the value of pi is 3.141593

More than one specifiers can be combined in a single printf statement, as long as
they match the number and type of the variables that follow the control string. For
example, the line

printf(‘‘Equations: %d; pi=%f\n’’,Neq,pi);
produces the output

Equations: 3; pi=3.141593

For very large or very small numbers, we often obtain more meaningful results
if we use the %e specifier. For example, if we assign the mass of the electron to a
variable of type double as in

double Mass_electron=9.11e-31; \\ kgr
then printing it with the command

printf(‘‘Mass of electron=%f kgr\n’’,Mass_electron);
generates the output

Mass of electron=0.000000 kgr
Because the first six digits after the decimal point are zero for a number as small
as the mass of the electron, the output is not meaningful. If, on the other hand, we
use the command

printf(‘‘Mass of electron=%e\n’’,Mass_electron);
the output will be

Mass of electron=9.110000e-31 kgr

1-10 CHAPTER 1. THE C PROGRAMMING LANGUAGE

It is important to emphasize that the specifier required for printing a variableProgramming
Tip is determined by the type of the variable, e.g., whether it is of type int or float,

and not by the value assigned to the variable. For example, the following two lines
of code

float days_in_year=365.0;
printf(‘‘The number of days in a year is %d\n’’,days_in_year);

are not correct. The variable days_in_year is of type float, even though its value
is an integer number, whereas the specifier %d used in the printf statement is for
variables of type int. The output of these lines of code is something similar to

The number of days in a year is 1081528320
which is clearly not what was intended.

There are a number of ways in which the output of variables of type int can be
modified. The following few lines of code demonstrate the most useful modifications

int days_in_year=365;
printf(‘‘#%d#\n’,days_in_year);
printf(‘‘#%5d#\n’,days_in_year);
printf(‘‘#%-5d#\n’,days_in_year);

The output of these commands is
#365#
365#
#365 #

In the first printf statement, only the three digits of the number stored in the
variable days_in_year are being printed on the screen, with no leading or trailing
spaces. In the second printf statement, the integer number 5 between the symbols
% and d specifies the minimum number of columns being allocated for the output
of the variable. Because the value assigned to this variable has three digits, there
are two additional spaces to the left of the number 365. Finally, in the last printf
statement, the minus sign after the symbol % generates an output of the value
assigned to the variable days_in_year that is left justified.

The specifiers %f and %e can be modified in a very similar way to control the
format of the output of floating numbers. As an example, the following lines of code

float pi=3.1415927;
printf (‘‘#%f#\n’’,pi);
printf (‘‘#%e#\n’’,pi);
printf (‘‘#%9.3f#\n’’,pi);
printf (‘‘#%9.3e#\n’’,pi);

generate the output
#3.141593#
#3.141593e+00#
3.142#
#3.142e+00#

In the last two printf statement, the number 9 after the symbol % specifies the
minimum number of columns alocated for the output of the variable pi, whereas
the number 3 after the decimal point specifies the number of digits that will be
printed to the right of the decimal point. Note that in the case of the %e specifier,
the total number of columns includes the column needed for printing the symbol e
as well as the exponent.

The control string in a printf statement can also incorporate a number ofControl
Characters control characters that provide additional flexibility in formating the printing of

text and variables. One of these characters is \n, which instructs the program to
continue printing in a new line. Some other useful control characters are listed

1.4. EVALUATING MATHEMATICAL EXPRESSIONS WITH C 1-11

below

Control
Character

\b
\t
\\
\’
\"

backspace
horizontal tab
backslash (\)
single quote (’)
double quote (’’)

Note that the last three control characters allow us to print the symbols \, ’, and
’’ without confusing them with other control characters of the C language.

Many programs require input from the user to specify, for example, initial values Input
from the keyboardor other parameters of the calculation. This task is achieved with the command

scanf. Its general syntax is similar to that of the command printf, i.e.,
scanf(‘‘control string’’, &variable1, &variable2, ...)

with the control string consisting of printable characters, of specifiers, and of control
characters. Note that, contrary to the command printf, the variable names in this
case are preceded by the symbol &. We will discuss the reason for this in the section
about pointers.

The main specifiers for the command scanf that are useful in computational
physics programs are

Specifier %d
%f, %e
%lf, %le
%c

Input will be interpreted as type int
Input will be interpreted as type float
Input will be interpreted as type double
Input will be interpreted as type char

The use of the command scanf is illustrated with the program in the following
page, which converts a temperature value from degrees Fahrenheit to degrees Cel-
sius. The first two lines of the main program declare two variables of type float
in which to store the value of the temperature expressed in the two temperature
scales. Note the use of the comments following each declaration to explain the use
of the variables.

The following command
printf("Degrees Fahrenheit? ");

prints the message
Degrees Fahrenheit?

and the command
scanf("%f",°rees_F); // Input from user Degrees F

waits for input from the user and stores it in the variable named degrees_F. The
program then computes the equivalent value of the temperature in the Celsius scale
using the assignment

degrees_C=(degrees_F-32.0)*5.0/9.0;
and outputs the result on the screen.

1.4 Evaluating Mathematical Expressions with C

The C programming language offers a wide variety of mathematical functions that
we can use in performing numerical calculations. The basic algebraic manipula-
tions, i.e., addition, subtraction, multiplication, and division, are performed with
the symbols +, -, *, and \, respectively. For example, the command

a=b+c;

1-12 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include <stdio.h>

/* Program to convert degrees F to degrees C */
int main(void)
{
float degrees_F; // Degrees Fahrenheit
float degrees_C; // Degrees Celsius

printf("Degrees Fahrenheit? ");
scanf("%f",°rees_F); // Input from user Degrees F

// Convert to Degrees C
degrees_C=(degrees_F-32.0)*5.0/9.0;

// Output result
printf("%f degrees F are equal to ",degrees_F);
printf("%f degrees C\n",degrees_C);

return 0;
}

adds the values of the variables b and c and assigns the result to the variable a,
whereas the command

a=b/c;
divides the value of the variable b by the value of the variable c and stores the result
in the variable a.

There are a few shortcuts for common mathematical expressions that are incor-
porated in the syntax of the C language and not only result in a compact source
code but often affect the speed of computations as well. For example, the commands

f++;
and

f--;
are equivalent to

f=f+1;
and

f=f-1;
respectively. The symbols ++ and -- are called the increment and decrement oper-
ators, respectively. Moreover, the command

f+=a;
is equivalent to

f=f+a;
Similarly, the commands

f-=a;
and

f*=a;
are equivalent to the commands

f=f-a;
and

f=f*a;
respectively.

The C language follows a well defined set of rules regarding the order of evalu-Operator
Precedence ation of different operators that appear in a complicated mathematical expression.

For example, among the operators that we discuss here, the increment and decre-
ment operators (++ and --) have the highest precedence, followed by the operators

1.4. EVALUATING MATHEMATICAL EXPRESSIONS WITH C 1-13

for multiplication and division (* and /), and then by the operators for addition and
subtraction (+ and -). When two or more operators of the same precedence appear
in an expression, then the C language evaluates them in the order they appear,
from left to right. As an example, in evaluating the expression

c=2.0+3.0*5.0;
the multiplication 3.0*5.0 is performed first and the product is then added to 2.0
for a final result of 17.0.

As in mathematics, we can change the ordering with which various operators
in an expression are evaluated by grouping together complicated expressions using
parentheses. For example, the command

c=(2.0+3.0)*5.0;
assigns to the variable c the value 25.0, because the parentheses force the addition
to be performed before the multiplication. Parentheses can be nested at different
levels to allow for more flexibility in the ordering of evaluation of a mathematical
expression. For example, the command

c=(0.8+0.2)/(2.0*(1.0+1.0)+1.0);
assigns to the variable c the value 0.2.

For more complicated mathematical operations, the C language makes use of an Mathematical
Functionsexternal library of mathematical functions. In order to employ them, we need to

add to the beginning of the source code the preprocessor directive
#include <math.h>

In many implementations of the C compiler, we also need to alter the command
with which we compile a program whenever we are using this library of mathemat-
ical functions. For example, if we saved the source code of a program that uses
mathematical functions in the file math_calc.c, then we would compile it with the
command

gcc math_calc.c -o math_calc -lm
The option -lm at the end of this command links the library with mathematical
functions to the compiler.

The following table summarizes the most common of the functions in the math-
ematical library. In all cases, the arguments of the functions are variables of type
float or double and the result should also be stored in variables of type float or
double.

Function fabs(a)
sqrt(a)
pow(a,b)
sin(a)
cos(a)
tan(a)
atan(a)
log(a)
log10(a)

absolute value of a
square root of a
a to the b-th power (i.e., ab)
sine of a (in radians)
cosine of a (a in radians)
tangent of a (a in radians)
arc (in radians) with tangent a
natural logarithm of a (i.e., ln a)
logarithm base 10 of a (i.e., log10 a)

Note in particular that the arguments of the trigonometric functions sin, cos, and
tan are in radians and not in degrees.

It is possible to mix variables or constants of different data types in a single Programming
Tipexpression; the C compiler typically makes the appropriate conversion and calculates

the correct result. There is, however, the potential of introducing in this way
mistakes in the program that are very difficult to spot and correct. This is especially
true when data of type int are mixed with data of type float or double. Consider
for example the two lines of code

1-14 CHAPTER 1. THE C PROGRAMMING LANGUAGE

float c,d=0.1;
c=(1/2)*d;

The second command will assign zero to the variable c and not 0.05 as we might
have thought. This happens because the ratio (1/2) is written as a ratio of integer
numbers and C evaluates the result as an integer number before multiplying it to
the value of the variable d. The integer part of the ratio (1/2) is zero and hence
the result of this expression is zero. Had we written

float c,d=0.1;
c=(1.0/2.0)*d;

then the second command would have assigned the correct value 0.05 to the variable
c.

1.5 Branching

A numerical calculation often follows different paths depending on the values of
quantities that are evaluated as part of the calculation itself. For example, the
roots of the quadratic equation

ax2 + bx + c = 0 (1.1)

can be real or complex depending on the value of the discriminant

∆ ≡ b2 − 4ac . (1.2)

If ∆ ≥ 0, then the equation has two real roots that are not necessarily distinct,

x1,2 =
−b ±

√
∆

2a
, (1.3)

whereas if ∆ < 0, the equation has two complex roots

x1,2 = − b

2a
± i

√
∆

2a
. (1.4)

A computer program that solves such a quadratic equation requires, therefore, two
different ways of displaying the solution, depending on the value of the discriminant.
In the C language, this type of branching is achieved with the if statement, as
illustrated with the program that appears in the next page.

The program starts by asking the user to input the values of the three parameters
of the quadratic, a, b, and c and then uses them to evaluate the discriminant Delta.
At this point, the flow of the calculation depends on the value of the discriminant.
For positive discriminants, i.e., when Delta>=0, the program evaluates the two real
roots and prints the result. On the other hand, for negative discriminants, the
program calculates the real parts of the two complex roots as well as the absolute
values of their imaginary parts and prints the result.

The general syntax of the if statement isConditions
if (condition)

command 1
else

command 2
If the condition in the parenthesis that follows the if statement is satisfied, then
command 1 is executed, otherwise command 2 is executed.

For the programs that we will be considering in this book, the condition is any
logical expression that can be either true or false. This often involves the validity of

1.5. BRANCHING 1-15

#include <stdio.h>
#include <math.h>

/* Program to solve the quadratic equation
a*x*x+b*x+c=0 */

int main(void)
{
float a,b,c; // Parameters of quadratic
float Delta; // Discriminant
float root1,root2; // Two real roots
float root_real; // Real part of complex roots
float root_imag; // Abs value of imaginary part

// ... of complex roots

printf("a, b, c? ");
scanf("%f %f %f",&a, &b, &c); // Input the parameters

Delta=b*b-4.0*a*c; // Evaluate Discriminant

if (Delta>=0) // Two real roots
{
root1=0.5*(-b+sqrt(Delta))/a;
root2=0.5*(-b-sqrt(Delta))/a;
printf("The quadratic has the real roots: \n");
printf("%f and %f\n",root1,root2);

}
else // Two complex roots
{
root_real=-0.5*b/a;
root_imag=0.5*sqrt(-Delta)/a;
printf("The quadratic has the complex roots: \n");
printf("%f + i%f\n",root_real,root_imag);
printf("%f - i%f\n",root_real,root_imag);

}

return 0;
}

mathematical inequalities, as in the example discussed above. Additional examples
of conditions that involve mathematical expressions are given in the following table:

x<a
x>a
x<=a
x>=a
x==a
x!=a

x is less than a
x is greater than a
x is less than or equal to a
x is greater than or equal to a
x is equal to a
x is not equal to a

Note that the condition for the equality of two numbers involves the double-equal
sign (==), which is different than the assignment operator (=) that we discussed
before.

We can create more complicated conditions by combining simple expressions Logical
Operatorswith a number of logical operators. If we use A and B to denote simple logical

conditions, then some useful logical operators in order of decreasing precedence are
!A
A && B
A || B

True if A is false (Logical NOT)
True if both A and B are true (Logical AND)
True if either A and B are true (Logical OR)

1-16 CHAPTER 1. THE C PROGRAMMING LANGUAGE

Figure 1.1: An example of logical operator precedence in the C language. The hatch-filled areas
in the two graphs show the regions of the parameter space where the two shown conditions are
true.

For example, the condition
x>-1.0 && x<1.0

is true only if x has a value in the range −1 < x < 1. On the other hand, the
condition

x<y || x>-1.0 && x<1.0
is true if either x has a value in the range −1 < x < 1 or if it is smaller than y. As in
the case of mathematical expressions, we can change the order with which different
logical conditions are evaluated by using parentheses. For example, we can change
the previous condition by adding parentheses as

(x>y || x>-1.0) && x<1.0
This last condition will always be false if x ≥ 1, it will always be true if −1 < x < 1,
but will also be true if x ≤ −1, as long as x < y. Figure 1.1 illustrates the difference
between the two conditions discussed in this example.

1.6 Loops

One of the most useful aspects of a computer is its ability to repeat many times
a simple task. For example, calculating the factorial of a number N using the
equation

N ! =
N∏

i=1

i (1.5)

requires the evaluation of N products, which can be a daunting task for a human if
N acquires large values. The procedure of repeating a task multiple times is called
looping.

The C language offers three different ways for performing loops. If the numberLoops
of repetitions is known a priori , then we can use the command for that has the
following general syntax:

for (initialization; condition; update)
command

In the beginning of the loop, the initialization is evaluated. Then the command is
repeated until the condition is met, with the update being evaluated at the end of
each repetition.

1.6. LOOPS 1-17

#include <stdio.h>
#include <math.h>

/* Program to calculate the factorial of a number */
int main(void)
{
int number; // number to calculate factorial of
int factorial; // the factorial
int index; // index for looping

printf("Number? ");
scanf("%d",&number); // input the number

if (number<0) // no factorial for negatives
{
printf("The number %d is less than zero \n",number);

}
else // normal case
{
factorial=1; // initialize product

// and multiply integers<=number
for (index=1;index<=number;index++)
factorial*=index;

// output the result
printf("The factorial of number %d ",number);
printf("is %d\n",factorial);

}

return 0;
}

The example program shown above illustrates the use of the command for in
calculating the factorial of a number using equation (1.5). The command

for (index=1;index<=number;index++)
causes the program first to initialize the variable index to unity. It then evaluates
the first term of the product with the commands

factorial*=index;
that sets the value of the variable factorial to 1 since index=1. The program
then continues by updating the value of the variable index to 2, because of the last
argument in the command for, i.e.,

index++
It then repeats the command

factorial*=index;
to set the value of the variable factorial to 2. Because of the second argument in
the command for, i.e.,

index<=number
this process is repeated for as long as the value of index is smaller than the value of
number. After each repetition, the value of index is increased by one. At the end
of the loop, the variable factorial will have the factorial of the number stored in
the variable number.

Note that there is no semicolon after the closing parenthesis in the for statement, Programming
Tipbecause the command that follows is considered as an integral part of the for

statement itself. Had we put a semicolon there, the program would assume that
there is no command to be repeated and would simply update the looping variable

1-18 CHAPTER 1. THE C PROGRAMMING LANGUAGE

index without using it in any calculation. This is a common mistake in C programs
and is very hard to spot.

If each repetition requires the execution of more than one commands, then we
enclose the set of commands that need to be repeated in curly brackets. For example,
we could change the loop in the previous program by adding an extra command
that verbalizes to the user the progress of the algorithm, e.g.,

for (index=1;index<=number;index++)
{

factorial*=index;
printf("Done with %d multiplications\n",index);

}
In this case, both commands within the curly brackets will be repeated during the
loop.

If the number of repetitions in a loop is not known a priori but a set of commands
needs to be repeated while a condition is true, then we can use the while command.
The general syntax of the command is

while (condition)
command

This causes the program to repeat the command while the condition is true. As in
the case of the for loop, the command can be either a single command or a set of
commands enclosed in curly brackets.

For example, the following lines of code calculate the remainder of the integer
division between the numbers Num1 and Num2 by subtracting the latter from the
former until the result becomes less than zero

scanf("%d %d",&Num1,&Num2);
while (Num1>=0)

Num1-=Num2;
printf("The remainder is %d\n",Num1+Num2);

Note again the absence of a semicolon following the closing parenthesis in the while
command.

In both the for and the while commands, the condition that determines whether
the looping commands continue to be repeated is checked in the beginning of each
repetition. As a result, if the condition is false initially, then the looping commands
are never executed. In several situations, however, it is useful for the condition to
be executed at the end of each repetition. This will be necessary, for example, if the
condition depends on the calculation being performed during each iteration of the
loop. We can achieve this by using the do - while command. The general syntax
of this command is

do
command

while (condition);
In this case, the command is executed as long as the condition is true. However,
because the condition is checked at the end of its repetition, the command will be
executed at least once, even if the condition is false initially. Note the semicolon
following the closing parenthesis that terminates the while command.

The program in the next page uses the do - while command to calculate the
sum

∞∑

n=1

= 1 +
1
2

+
1
4

+ ... +
1
2n

+ ... (1.6)

Because this is an infinite but converging sum, we choose to add all the terms until

1.6. LOOPS 1-19

#include <stdio.h>
#include <math.h>

/* Program to calculate the sum of the series
1+1/2+1/4+...+1/2^n+...

to a required accuracy */

#define ACCURACY 1.e-6 // level of required accuracy

int main(void)
{
float n=1; // index of sum
float term; // each term in sum
float sum=0.0; // current value of sum

do // keep on adding terms
{
term=pow(2.0,-n); // calculate current term
sum+=term; // add to the sum
n++; // and go to next term

} // as long as haven’t reached
// accuracy

while (fabs(term/sum)>ACCURACY);
// print result

printf("The result is %f\n",sum);
return;

}

the one that makes a fractional contribution to the sum that is smaller than the
constant ACCURACY. In this case, it is to our advantage to have the condition checked
at the end of each repetition, because at least one term needs to be calculated and
the condition involves that calculated term.

Note in this program the use of the constant ACCURACY that we introduced using Programming
Tipthe preprocessor directive

#define ACCURACY 1.e-6 // level of required accuracy
which clarifies in plain English the condition in the do - while loop.

The set of commands that are repeated in a loop may incorporate a second loop, Nesting
which may incorporate a third loop, and so on. This is called loop nesting and
can extend for several levels. The only requirement is that each inner loop must
terminate before an outer loop does. This is illustrated with the example in the
following page.

Keeping track of the beginning and end of each loop, which is crucial for nesting Programming
Tiploops properly, is very easy if the source code has proper indentation. In the program

shown in the next page, the opening and closing braces for each loop (as well as
for the main program) are placed on the same column of the text editor. This
is called the ANSI indentation style, because it has been used in the documents
that standardized ANSI C, but is not the only one. Different styles have different
advantages and disadvantages. Although the choice is mostly a matter of esthetics,
a well indented program will be very readable and mistakes will be spotted more
easily. Most modern text editors perform the indentation automatically.

1-20 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include<stdio.h>

/* Prints the multiplication tables of the numbers between
1 and 10 to illustrate the use of nested loops */

int main(void)
{
int i,j;
for (i=1;i<=10;i++) // i-loop
{ // --------------

// j-loop |
for (j=1;j<=10;j++) // --------| |
{ // | |

printf("%2d x %2d = %3d\n",i,j,i*j); // | |
} // --------- |

// |
} // --------------

return 0;
}

1.7 Arrays

Earlier in this chapter, we discussed variables of different type that can be used
in storing data in the computer memory. Their only limitation is the fact that
each variable can store only a single piece of data. There are many occasions in
scientific computing, however, when the amount of information we wish to store is
so vast that it is impractical for us to define a new variable for each piece of data.
Consider for example, an X-ray detector that has been measuring the X-ray photons
from a source for a total of 10 hours but has recorded the number of photons it
detected in intervals of one second. If we wish to calculate the average rate with
which photons were detected, then we will need to store all this information in the
computer memory. Since there are 36,000 seconds in 10 hours, this will require
defining 36,000 different variables!

The C language offers several ways of handling complicated and large data struc-
tures. Here we will discuss only the arrays, which are the simplest and most
commonly used ones.

An array is a data structure that allows us to store in the computer memoryDeclaration
and use a large amount of data of the same type. As with all other variables, we have to

declare an array before we can use it. Consider, for example, a program in which we
wish to store the energy it takes to remove an electron from a neutral atom for the
first six elements; this is called the ionization energy. We will need an array of type
float with six elements in order to store the six different values of the ionization
energy. We can declare this array with the command

float ioniz_energy[6]; // ionization energy in eV
Note that, following the name of the array, we declared within the square brackets
the number of its elements.

When declaring an array, we may initialize its elements by enclosing a list of
values in curly brackets separated by commas. For the above example, we could
write

float ioniz_energy[6]={13.6, 24.6, 5.4, 9.3, 8.3, 11.3};
in order to initialize the array with the ionization energies (in eV) of the elements
from hydrogen to carbon.

Following its declaration, we can use each element of the array in the same way

1.7. ARRAYS 1-21

Figure 1.2: A visual representation of the way in which the two dimensional array of equa-
tion (1.7) is stored sequentially in the computer memory.

we would have used any variable of the same type. The only potentially confusing
issue with arrays in the C language is the fact that we use the index [0] to refer to
the first element of the array, the index [1] to refer to the second element, and so
on. In the previous example, the command

printf("%f %f\n",ioniz_energy[0],ioniz_energy[5]);
generates the output

13.600000 11.300000
In general, if an index has N elements, then its first element will always correspond
to index [0] and its last element to index [N-1].

We can declare an array with more than one dimensions by adding to its name Multidimensional
Arraysthe number of elements in each dimension enclosed in square brackets. For example,

we can store the 3× 3 identity matrix

I =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (1.7)

in a two dimensional array that we declare using the command
float identity[3][3];

As in the case of one dimensional arrays, the top left element of the identity matrix
is identity[0][0] and the bottom right element is identity[2][2].

A multi-dimensional array is stored in the computer memory in a sequential way,
as shown in figure 1.2. The first element identity[0][0] is stored first, followed
by all the other elements of the first row. Then the elements of the second row
are stored, and the same procedure continues until the last element of the array
occupies the last allocated memory space.

We can make use of the sequential storage of a multi-dimensional array when
we initialize the values of its elements. For example, the command

float identity[3][3]={1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0};

declares the 3×3 array identity and initializes its elements to those of the identity
matrix.

It is important to emphasize here that the standard libraries of the C language do
not incorporate commands that perform operations between arrays. For example,
the following lines of code

float A[3][3],B[3][3],C[3][3];
C=A+B; \\ does not work!

do not store in array C the sum of the arrays A and B. In order to perform a matrix
addition, we need to add one by one all the elements of the arrays, as in the example
shown in the following page.

1-22 CHAPTER 1. THE C PROGRAMMING LANGUAGE

#include<stdio.h>
#define Nelem 3

/* Calculates the sum of the 2-dimensional square matrices A and B
and stores it in matrix C. The size of each matrix is controlled
by the parameter Nelem */

int main(void)
{
float A[Nelem][Nelem],B[Nelem][Nelem],C[Nelem][Nelem];
int row, column;

/* insert here code to initalize arrays A and B */

for (row=0;row<=Nelem;row++) // for all rows
{
for (column=0;column<=Nelem;column++) // and for all columns
{ // add each element

C[row][column]=A[row][column]+B[row][column];
}

}
return 0;

}

1.8 Functions

As we discussed in the beginning of this chapter, a key feature of the C language is
the small number of its core commands and the extensive use of external functions.
We are already familiar with the various mathematical functions that are part of
the external library that we invoke with the preprocessor directive

#include <math.h>
For example, the command

b=sqrt(a);
calls the mathematical function sqrt(a) that calculates the square root of the
variable a. Even the statements printf and scanf are functions that only perform
an operation, such as print on the screen or request an input from the user, but do
not return any specific value. (Speaking more precisely, they do return a value, but
we do not need to use it for now.)

A function, in general, is any piece of computer code that may require some
input (called the argument of the function), performs an operation, and may
return a result. We may think of a function as a black box, for which we only need
to provide a particular set of input parameters and expect a specific output. All
modern computer languages give us the possibility of defining and using our own
functions in a computer program. This is a fundamental ingredient of structured
progamming.

The example in the following page illustrates how we can define and use a new
function that calculates the factorial of an integer number. We choose to call this
function Nfactorial (compare it to the program in Page 1–17).

The first command after the preprocessor directive informs the compiler thatFunction
Prototyping a new function will be introduced somewhere later in the program, it declares the

number and type of its arguments, and finally specifies the type of data that the
function returns. This is called function prototyping. In this case, the function
will be called Nfactorial, it will take one integer value as an argument, and it
will return an integer number as its result. Note the semicolon at the end of the

1.8. FUNCTIONS 1-23

#include <stdio.h>

/* Function Prototypes */
int Nfactorial(int number);

/* Main program to calculate the factorial of a number */
int main(void)
{
int number; // number to calculate factorial of
int factorial; // the factorial

printf("Number? ");
scanf("%d",&number); // input the number
factorial=Nfactorial(number); // calculate factorial
if (factorial>0.0) // if calculation is possible
{ // output the result
printf("The factorial of number %d ",number);
printf("is %d\n",factorial);

}

return 0;
} // end of main program

int Nfactorial(int number)
/* Function that calculates the factorial of its

argument. If number<0 it returns -1 */
{
int factorial; // the factorial
int index; // index for looping

if (number<0) // no factorial for negatives
{
factorial=-1; // result is the error code

}
else // normal case
{
factorial=1; // initialize product

// and multiply integers<=number
for (index=1;index<=number;index++)
factorial*=index;

}
return factorial; // return the result

}

command, which indicates that this is just the prototype and the function itself will
be defined elsewhere.

The main program, which follows after the function prototype, is practically
identical to that of Page 1–17, with one important difference. Instead of calculating
the factorial of a number explicitly, the command

factorial=Nfactorial(number); // calculate factorial
assumes that the function Nfactorial exists and performs that calculation. Al-
though we have not explicitly indicated yet what this function does, the compiler
will not complain because of the function prototype that we indicated before the
main program.

1-24 CHAPTER 1. THE C PROGRAMMING LANGUAGE

From Spaghetti Code to Structured Programming

Early versions of computer languages that were developed in the 50’s and 60’s,
such as IBM’s FORTRAN (FORmula TRANslating system) and Dartmouth
College’s BASIC (Beginners All-purpose Symbolic Instruction Code), did not
incorporate user-specified functions or procedures. In such languages, the flow
of the program could be changed through GOTO commands, which caused the
execution to jump unconditionally to a different part of the code. This unstruc-
tured programming practice is said to lead to spaghetti code, because the flow
chart of such a code will look as tangled as a plate of spaghetti.
In the late 60’s, marked by an influential paper by Edsger Dijkstra titled “GOTO
Statement Considered Harmful”, a new programming practice was developed
under the name structured programming. In this approach, a computer pro-
gram is divided into a large number of small, independent pieces and each of
these pieces is implemented as an individual user-defined function. This prac-
tice minimizes (but does not eliminate) the use of GOTO statements and in-
variably leads to a clean and structured flow chart of the code. PASCAL was
the first computer language that was specifically designed in 1970 for the teach-
ing of structured programming but it was the C language that exploited this
paradigm. Today, almost all computer languages, including the latest versions
of FORTRAN and BASIC, comply with the philosophy of structured program-
ming.

As we will see below, our new function returns the factorial of its argument,
unless the argument is negative, in which case it returns the value -1. Because the
factorial is defined only for positive integer numbers and is always larger than zero,
the value -1 is clearly an indication that something has gone wrong in the function
we defined. This is called error handling and is an important component of all
functions. If the result of the function is positive, then no error has occurred and
the program prints out the value of the factorial.

The body of the function Nfactorial follows that of the main program. The
first command

int Nfactorial(int number)
is the same as that used for the prototype, without the final semicolon. The com-
mand starts with the data type of the function’s result, which in this case is of type
int. It is then followed by the name of the function and, finally, by the data types
and names of the arguments enclosed within parentheses. In this case, the function
takes only one argument, a variable of type int that will be called number.

Comparing the initial statement of the function with the initial statement of theThe Main
Program main program, i.e.,

int main(void)
it becomes obvious that the main program is just another function for the C com-
piler, with the distinction that it is the one that is executed first. Note that the
main program does not take in this example any arguments, although it may in
principle. For this reason, its argument list within the parentheses is replaced by
the type void. Moreover, the main program is expected to return a result of type
int, which may be used by the operating system for error handling, for example.

Returning to the main body of the function Nfactorial in the previous exam-
ple, we notice that it starts with the declaration of two local variables and continues
with the evaluation of the factorial of the integer stored in the variable number. At
the end of the calculation, the result is stored in the variable factorial. The last
statement in the body of the function, i.e.,

1.9. LOCAL AND GLOBAL VARIABLES 1-25

return factorial; // return value of factorial
instructs the compiler to return this value as the result of the function. For obvious
reasons, the data type of the variable that follows the statement return should be
the same as the data type of the function stated in the prototype and in the decla-
ration. In this example, both the function Nfactorial and the variable factorial
are of type int. In the case of the main program, which in the C language is a
function of type int, we emphasize the fact that the program finished without er-
rors by returning the integer value zero with the command

return 0;
Note that a function can return only one result. In §1.10, where we will introduce
the concept of pointers, we will discuss an alternate way in which we can program
a function to affect the value of more than one variables.

A function can have more than one arguments of different types. The most
general syntax of a function declaration is

type function name(type variable1, type variable2, ...)
where each variable in the argument list is preceded by its type. For example,
the following lines of code implement a function that calculates the logarithm of a
number in an arbitrary base, using the expression

logb a =
ln a

ln b
. (1.8)

float logbase(float number, float base)
/* Function to calculate the logarithm of the variable number in

an arbitrary base. If either argument is negative it returns
the value -9999, which would not have occurred even for the
smallest allowed positive number of type float. */

{
if (number>0 && base>0) // logarithms defined only for
{ // positive numbers
return log(number)/log(base);

}
else // error handling
{
return -9999.0;

}
}

There are three points to note in this function. First, both the variable number
and the variable base in the argument list are preceded by their types, even though
both are of type float. This is contrary to the usual variable declarations, where
variables of the same type can be collected together in one decleration statement.
Second, the variables in the argument list are not declared again in the main pro-
gram. Finally, a function may have more than one return statements, although
this practice is susceptible to introducing logical mistakes in the code, since it cor-
responds to a function that has multiple exit points.

1.9 Local and Global Variables

Every function, including the main program, starts with the decleration of the
variables that will be used

