
Chapter 2

Floating Point Arithmetic

In this chapter we will learn how to

• utilize the ways in which a computer stores and manipulates numbers

• control the approximate nature of numerical computations

• handle special situations that arise when we attempt to evaluate irregular
numerical expressions

In every day life, we perform the vast majority of our calculations using the decimal
numeral system. This system was invented by the Hindus several thousand years
before the present time and made its way to the west via the translation of the
writings of the Persian astronomer and mathematician Muhammad ibn Musa al-
Khwarizmi (∼780–850). It uses the digits 0, 1, ..., 9, the signs + and −, as well as
the decimal point (.) to represent all possible numbers.

The decimal system is neither unique nor optimal for performing numerical
computations. For example, multiplications and divisions are easier to perform in a
system with base 12, since 12 has five integer divisors (one, two, three, four, and six)
as opposed to 10 that has only three (one, two, and five). In fact, since antiquity,
many civilizations have invented different numeral systems, several of which we use
even today, in different aspects of everyday life (see the box in the next page).
Despite its shortcoming, however, the decimal system is now the most widely used
numeral system, for reasons that are believed to be intimately related to the number
of fingers that we have in our hands. This fact has upset many mathematicians in
the past and even led the French mathematician Blaise Pascal (1623–1662) to write
“The decimal system has been established, somewhat foolishly to be sure, according
to man’s custom, not from a natural necessity as most people think” (as quoted in
[1]).

Early computers and modern day digital electronics do not count using their Binary
Systemfingers but rather with vacuum tubes and solid-state transistors. Both of these

electronic devices have only two states: off and on. It is, therefore, natural for
them to represent only the digits 0 (for off) and 1 (for on) and perform computations
in the numeral system that has base 2, which is called the binary system. The
design and arithmetic of a digital computer that is based on the binary system was
explored in the 1946 classic paper by Burks, Goldstine, & von Neumann[2]. The
procedures outlined in this paper form the basis of all modern computers, although
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Numeral Systems in Everyday Life

Base 60: Invented by the Babylonians and passed to the ancient Greeks via the
Egyptians, it became widely used in measuring positions of starts in the sky. It
still survives today in the measurement of angles (a full circle has 360 degree, a
degree has 60 arc minutes, an arc minute has 60 arc seconds) and of time.
Base 20: Used by the Gaul in pre-Roman France. Echoes of this system can be
found in modern French, as in the word for the number 97 (quatre-vingt-dix-
sept), which literally stands for four-times-twenty-plus-seventeen.
Base 12: Used extensively (often in conjunction with the decimal system) in
defining the resolution of printers. Common resolutions are 360 (=3× 12× 10),
600 (=3×12×10), 720 (=6×12×10), 1200 (=10×12×10), or 1440 (=12×12×10)
dots per inch.
Base 2: Invented by merchants in medieval England, the units of liquid measure
are based on the binary system. For example, 1 gallon = 2 pottles; 1 pottle = 2
quarts; 1 quart = 2 pints, 1 pint = 2 cups, etc. The binary system is also used
in defining note values (duration) in musical scores, i.e., whole note, half note,
quarter note, eighth note, sixteenth note, etc.

For a more complete history of numeral systems and an extensive bibliography
see [1].

a number of experimental models have been designed in the past that used the
decimal or even other numeral systems.

Performing an algebraic calculation on most digital computers differs in one
more fundamental way from performing the same calculation with paper and pen.
A computer routinely approximates a number that has many—or even an infinite
number of—digits by keeping only the most significant of those digits. This is
different from a human, who will often use a particular notation to denote the
correct value of the number and define new rules to perform algebraic computations
with the new notation. For example, a human will write (

√
2)2 = 2, which is a

correct result, even though
√

2 is a non-repeating decimal number. On the other
hand, a computer that only stores the seven most significant digits of a number and
truncates the rest will set

√
2 = 1.414214 so that (

√
2)2 = 2.000001!

The use of the binary numeral system and the inherent approximations involved
in manipulating non-repeating numbers often lead to severe errors in even the sim-
plest numerical computations. In this chapter, we will discuss the basic rules of
computer arithmetic and develop strategies to evaluate and control its limitations.
For further reading, the classic book The Art of Computer Programming. Volume II:
Semi-Numerical Algorithms by D. A. Knuth[1] provides a complete but pedagogical
discussion of the subject.
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2.1 The Positional Notation System

In mathematics, we represent all numbers using the positional notation system. We Base and Radix
first decide on the base (or radix) of the system to use and the notation with which
to represent the various digits. For simplicity, let us assume that we pick a positive
integer number b to be the base and the integers di with 0 ≤ di < b to be the digits.
Then we agree to use the notation

±(...d3d2d1d0.d−1d−2d−3...)b (2.1)

to represent the number

±(... + d3b
3 + d2b

2 + d1b
1 + d0 + d−1b

−1 + d−2b−2...) (2.2)

For example, when we write 1024 in the decimal notation, we imply the number
1 × 1000 + 0 × 100 + 2 × 10 + 4. In this last example, we should have formally
written the number as (1024)10, but we typically drop the subscript that denotes
the base when we use the decimal system. It is worth emphasizing here that we can
use any number as the base of a numeral system, including negative, irrational, or
even complex numbers.

Converting a number between different numeral systems is a very simple proce-
dure, as can be seen in the following example.

Example: Conversion between numeral systems

In order to convert a number from a numeral system with base b to the decimal
system, we can simply use the definition (2.2). For example, the number (256.4)8
is equal to

(256.4)8 = 2× 82 + 5× 81 + 6 + 4× 8−1 = (164.5)10 (2.3)

In order to perform the conversion of an integer number from the decimal system
to one with base b, we start by performing a successive set of divisions of the number
with the base, until the result of the final division is smaller than the value of the
base. We then keep the final quotient as well as the remainder of each division, in
reverse order, as the corresponding digits in the new system.

As an example, in order to convert the number (75)10 to base 2 we perform the
following divisions:

We then use the last quotient as the first digit of the number in the binary
system and add the remainders of each division, in reverse order, as the remaining
digits. The result is (75)10 = (1001011)2.



2-4 CHAPTER 2. FLOATING POINT ARITHMETIC

If the number in the decimal system is not an integer, we convert the integer and
the non-integer parts of the number separately. According to the definition (2.2),
digits to the right of the decimal point correspond to successive negative powers of
the base, i.e., b−1, b−2, etc. As a result, in order to follow the previous procedure
we will need to divide successively the number with b−1, which is equivalent to
multiplying it successively by b. After each multiplication, we keep the integer part
of each product as the corresponding digit in the system with base b and repeat the
procedure with the non-integer part.

As an example, if we want to convert the number (75.1)10 to base 2, we first
convert the integer part as before, i.e., (75)10 = (1001011)2 and then the non-integer
part (0.1)10 as shown below.

The final result is, therefore, (75.1)10 = (1001011.000110011...)2. Note that,
although the number (0.1)10 has a finite number of digits in the decimal system,
it is a repeating number in the binary system. This is a general property of the
conversion of numbers between different numeral systems with often catastrophic
results, as we will discuss later in this chapter.

When we represent a number in a system with a base that is less than or equal toHexadecimal
System 10, it is customary that we use the usual Arabic numerals 0, ..., 9 as the digits. For

numbers in systems with larger bases, however, the usual numerals do not suffice
and we have to incorporate additional characters for digits larger than nine. It is
again customary that we use capital letters of the Latin alphabet for these high
digits. For example, the number (10)10 in base 16 is (A)16, the number (11)10 is
(B)16, the number (16)10 is (F )16, and the number (17)10 is (11)16.

The numeral system with base 16, or hexadecimal system, has a special relation
to the binary system, because its base is equal to 24. This property makes it perhaps
the second most commonly used numeral system in computational algorithms for
a number of reasons. First, every four digits of a number in a binary system
correspond to a single digit in the hexadecimal system. The hexadecimal system,
therefore, offers a quick shorthand for numbers in the binary system, which tend
to have a large number of digits. Consider the number (75)10 = (01001011)2 of
the last example, to which we have simply added the leading zero in the binary
representation. The last four binary digits of this number will correspond to the
last digit in the hexadecimal notation, i.e., (1011)2 = (B)16. The leading four
binary digits of the number will correspond to the next digit in the hexadecimal
system, i.e., (0100)2 = (8)16. As a result, we can write the long binary number
(01001011)2 in the shorthand (8B)16. Second, the hexadecimal representation of a



2.2. FLOATING POINT ARITHMETIC 2-5

number preserves the information related to the number of digits required to store
the number in the binary system. For example, the number (8B)16 requires at most
(2 hex digits) × (4 binary per hex digits) = 8 binary digits to be stored. Finally,
if the binary representation of a number has a finite number of digits to the right
of the decimal point so will its hexadecimal representation and vice versa. This
last property is important for the approximate representation of real numbers by a
computer, to which we now turn.

2.2 Floating point arithmetic

Positional notation systems allow us, in principle, to represent any real number,
from the smallest to the largest. In many cases, however, this is impractical, if a
number requires a very large (or even an infinite) number of digits to be represented.
For example, the constant π = 3.141592... has a non-repeating representation in all
numeral systems and requires and infinite number of digits to the right of the
decimal point.

Software packages that perform calculations using symbolic manipulations (such
as Mathematica and Matlab) overcome this problem by explicitly setting rules
for performing algebraic calculations with real numbers. On the other hand, nu-
merical computations that do not employ symbolic manipulation require a scheme
for the approximate representation of all real numbers. Floating point arithmetic
is such an approximate scheme in which real numbers are encoded and manipu-
lated using a series of integer numbers. It is the computer equivalent to scientific
notation.

The easiest way to describe the floating point representation of a number is
through an example. Consider the result of the mathematical expression e6 ≃
403.42879... In order to express this number in what is often called normalized
floating point notation, we first write it in scientific notation as e6 = 4.0342879...×
102 such that the number without the exponent is always smaller than the base. We
then decide on the number of significant digits that we will retain and keep (i) the
sign of the number, (ii) the exponent in the power of ten, and (iii) the string of
significant digits, which is called the significand or mantissa. The floating point
representation of e6 with 4 significant digits is

e6 = (+,2,4034)
whereas its representation with 8 significant digits is

e6 = (+,2,40342879)
The above example, of course, was written in the decimal system, but the same
idea can be applied in any other numeral system such as the binary system used by
a digital computer. In the latter case, the exponent corresponds to a power of 2,
which is the base of the binary system.

In 1985, many aspects of floating point arithmetic, such as the encoding and
precision with which numbers are represented, their rounding, and the handling of
special situations were standardized by the IEEE 754 Standard[3]. This standard
was extended in 1987 to include floating point arithmetic in the decimal system and
was further revised in 2008.

According to the IEEE 754 standard, a floating point number of single pre- Single
Precisioncision requires 32 binary digits (or bits) for its storage. (Note that in the 2008

revision of the IEEE 754 Standard, this format is called binary32.) The first bit
represents the sign of the number. It is zero for a positive number and one for a
negative number. The following 8 bits store (in binary format) the exponent and
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Figure 2.1: The storage format of a 32-bit single precision number (or binary32) and of a 64-bit
double precision number (or binary64).

the remaining 23 bits store the digits of the significand.
The exponent may, in principle, be positive or negative. In order to avoid

defining one bit as the sign of the exponent, the IEEE 754 requires that the number
127 is added to the value of the real exponent. The smallest number that can be
stored in 8 bits is zero and the largest number is (11111111)2 = (255)10. As a result,
the smallest actual exponent that can be stored is 0 − 127 = −127, whereas the
largest is 255− 127 = 128. This implies that the smallest and largest numbers of
either sign that can be represented with single precision are approximately 2128 ≃
3× 1038 and 2−127 ≃ 6× 10−39, respectively. These correspond to variables of type
float in the C programming language.

A double precision number requires 64 bits for its storage. (In the 2008Double
Precision revision of the IEEE 758 Standard, this format is called binary64.) As in the

previous case, the first bit holds its sign, the following 11 bits hold its exponent,
from which the number 1023 has be subtracted, and the remaining 52 bits hold
the digits of the significand. The smallest number that can be stored in 11 bits is
again zero, but the largest number is 211 − 1 = 2047. As a result, the largest and
smallest numbers that can be represented with double precision are approximately
22047−1023 ≃ and 20−1023 ≃, respectively. These correspond to variables of type
double in the C programming language.

In most situations, the C compiler deals automatically with the conversion be-
tween variable types when we perform a calculation that mixes variables of types
float and double (recall, though, the example at the top of page 1-10 for an excep-
tion). Understanding, however, the storage requirements and inherent limitations
of floating point arithmetic is crucial in developing accurate and efficient algorithms
for solving physical problems. In extreme cases, lack of understanding of floating
point arithmetic may have costly or even deadly consequences (see the boxes in
the following pages). In the remaining of this chapter, we will discuss the accu-
racy of floating point arithmetic and leave the issues related to its efficient use for
Chapter 5.
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Data type conversion errors can be very costly

Ariane 5 is the primary launch vehicle of the European Space Agency (ESA).
that operates from the Guiana Space Center near Kourou in the French Guiana.
Its first successful operational flight took place in December 1999, when it carried
to space the European X-ray Multi Mirror (XMM) satellite. Its first test launch,
however, on June 4, 1996 resulted in failure, with the rocket exploding 40 seconds
into the flight.
A study of the accident by an inquiry board[4] found that the failure was caused
by a software problem in the Inertial Reference System that was guiding the
rocket. In particular, the computer program, which was written in the Ada pro-
gramming language and was inherited from the previous launch vehicle Ariane
4, required at some point in the calculation a conversion of a 64-bit floating
point number to a 16-bit integer. The initial trajectory of the Ariane 5 launch
vehicle, however, is significantly different than that of Ariane 4 and the 16 bits
are not enough to store some of the required information. The result was an
error in the calculation, which the inertial system misinterpreted and caused the
rocket to veer off its flight path and explode. The cost of the failed launch was
upwards of 100 million dollars!

2.3 Rounding Errors

Any real number that does not terminate even when all the digits of the significand Relative
Errorare used is, by construction, stored and manipulated by the computer only approx-

imately. For example, the number π = 3.1415927... can be stored approximately
with 4 significant digits as π̄ = 3.142. We define the relative error with which a
real number x is represented by an approximate floating point number x̄ as the dif-
ference between the number and its approximate form, divided by the real number,
i.e.,

(relative error) ≡ x− x̄

x
. (2.4)

In the previous example, the relative error we introduce when we round the value
of π to four significant digits is equal to (π − 3.142)/π ≃ 0.00013.

The maximum possible relative error that may be introduced when a real num- Machine
Accuracyber is represented by an approximate floating point number is called machine

accuracy. Because we often use the symbol ϵ to denote the machine accuracy, we
also refer to it as the machine epsilon. It can be shown that, if we use a numeral
system of base b and keep p significant digits, the machine accuracy is equal to (see
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reference [2] for the derivation)

ϵ =
(

b

2

)
b−p . (2.5)

A single precision number, which requires 23 significant digits in the binary system
(see Figure 2.1), corresponds to a machine accuracy of ϵsingle = 2−23 ≃ 10−7. A
double precision number, which requires 52 significant digits in the binary system,
corresponds to a machine accuracy of ϵdouble = 2−52 ≃ 2× 10−16.

2.3.1 Rounding errors in algebraic operations

A rounding error of 1 part in 10 million, as in the case of single precision numbers,
might appear to be adequate for most practical problems in the physical world.
However, arithmetic operations, such as additions and subtractions tend to amplify
very quickly the rounding errors.

Consider for example the sum of three numbers 3.45 + 4.87 + (−5.16). Each
of the numbers is given with 3 significant digits and is, therefore, known to an
accuracy of ±0.005. The sum, however, is equal to (3.45± 0.005)+ (4.87± 0.005)+
(−5.16 ± 0.005) = 3.16 ± 0.015 and hence this addition of only three numbers has
already led to the loss of one significant digit. Numerical calculations often involve
tens of millions of arithmetic operations, at the end of which the final result may
be accurate to only a couple of digits or may not even be correct at all! This is
the fundamental limitation of all numerical computations: unless special
precautions are taken, the accuracy of a numerical calculation decreases rapidly
with the number of arithmetic operations performed.

In the following examples, we will explore several situations that lead to loss of
numerical accuracy in calculations and develop strategies to reduce or completely
overcome them. We will start with the amplification of rounding errors encountered
during the computation of sums.

Example: Counting Loops

Our first aim is to write an algorithm that computes the values of the function
f(x) = x2, when 0 ≤ x ≤ 1 in steps of ∆x = 0.1. First, we naively attempt the
following few lines of code

#include <stdio.h>

int main(void)
{

float x;

for(x=0.0;x<=1.0;x+=0.1)
printf("x=%f f(x)=%f\n",x,x*x);

return 0;
}

The output of this little algorithm, however, is
x=0.000000 f(x)=0.000000
x=0.100000 f(x)=0.010000
x=0.200000 f(x)=0.040000
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x=0.300000 f(x)=0.090000
x=0.400000 f(x)=0.160000
x=0.500000 f(x)=0.250000
x=0.600000 f(x)=0.360000
x=0.700000 f(x)=0.490000
x=0.800000 f(x)=0.640000
x=0.900000 f(x)=0.810000

Clearly something has gone wrong. The loop terminated when x=0.9 and not when
x=1.0 as required by the condition in the for statement. Changing the printf
statement to

printf("x=%10.8f f(x)=%10.8f\n",x,x*x);
reveals the problem. The output now is

x=0.00000000 f(x)=0.00000000
x=0.10000000 f(x)=0.01000000
x=0.20000000 f(x)=0.04000000
x=0.30000001 f(x)=0.09000001
x=0.40000001 f(x)=0.16000000
x=0.50000000 f(x)=0.25000000
x=0.60000002 f(x)=0.36000003
x=0.70000005 f(x)=0.49000007
x=0.80000007 f(x)=0.64000011
x=0.90000010 f(x)=0.81000017

Rounding errors have accumulated in the variable x such that the next value would
have been 1.00000012. This does not satisfy the condition in the for statement
and hence the loop terminates. But why is there a rounding error when, for exam-
ple, 0.1 is added to 0.2? The reason lies in the fact that the number 0.1 cannot be
represented exactly in the binary system, which is what the digital computer uses
to perform the addition. Indeed, as we have seen earlier, the binary representation
of the decimal number 0.1 is 1.10011001100...×2−4, which does not terminate after
the first 23 digits. As a result, adding the decimal number 0.1 to any number is an
approximate calculation in floating point arithmetic.

An obvious way to reduce such inadvertent rounding errors is the use of incre- Programming
Tipments that are inverse powers of 2. For example, changing the loop in the above

example to
for(x=0.0;x<=1.0;x+=1.0/16.0)
printf("x=%f f(x)=%f\n",x,x*x);

will resolve the problem and the loop will terminate only after printing the result
for x=1.0. In this case, the increment of the loop in the binary system is exactly
equal to (0.0001)2 and hence there is no rounding error involved.

Relying on using round numbers in the binary system, however, cannot be the
general practice as nature does not follow in general the binary system! A more
general solution to the problem involves using a variable of type int to count the
number of steps taken. We can rewrite the above example to make use of this tech-
nique as

#include <stdio.h>

int main(void)
{

int counter;
float x;
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for(counter=0;counter<=10;counter++)
{
x=counter*0.1;
printf("x=%f f(x)=%f\n",x,x*x);

}
return 0;

}
This loop will always terminate at the correct value for the variable x because there
is no rounding error in incrementing a variable of type int.

In the previous example, the rounding error did not affect significantly the ac-
curacy of any calculation. It introduced, however, a logical error that caused the
algorithm to terminate before it was expected to. We will study now an example, in
which the accuracy of the final result is significantly degraded when a large number
of operations is performed.

Example: Computation of large sums

Consider the situation in which we have obtained a very large number of mea-
surements of a particular quantity x and we would like to compute their average

⟨x⟩ =
1
N

N∑

i=1

xi . (2.6)

In this expression, xi is the value of the i−th measurement and N is the total
number of terms in the sum. In order to concentrate only on the propagation of
rounding errors, we will perform the calculation for the trivial case in which each
term is exactly equal to 0.1. In this case, ⟨x⟩ = 0.1, independent of the number
of terms added. However, as we have seen earlier, the binary representation of the
decimal number (0.1)10 requires an infinite number of binary digits and, therefore,
each calculation introduces a rounding error. We will be using variables of type
float, for which the machine accuracy is ≃ 10−7.

We will perform the calculation using the following lines of code that evaluate
the direct sum (2.6):

#include <stdio.h>
#define NTERM 10 // number of terms
#define VALUE 0.1 // value of each term

int main(void)
{

int index;
float sum=0.0,error;

// for all terms
for(index=1;index<=NTERM;index++)

sum+=VALUE; // add each values
sum/=NTERM; // divide by total number of terms
error=(sum-VALUE)/VALUE; // relative error
printf("Sum=%g Relative error=%g\n",sum,error);
return 0;

}
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Rounding errors may have deadly consequences

On February 25, 1991, during Operation Desert Storm, a Scud missile fired by
the Iraqi army hit a U. S. army barracks in the Dhahran Air Base in Saudi Ara-
bia, killing 28 soldiers. The air base was protected by a Patriot Air Defense Sys-
tem, which nevertheless failed to track and intercept the incoming Scud missile.
An investigation of the incident by the U. S. army revealed that accumulation of
rounding errors in the Patriot tracking software was responsible for the failure
of the interception[5].
Each battery of the Patriot Air Defense system consists of a ground based radar
and eight missile launchers. The radar detects airborne objects and tracks their
motion. In order to distinguish between different types of objects and, in partic-
ular, in order to identify ballistic missiles, a weapons control computer calculates
the expected trajectory of the missile. If the airborne object detected by the
radar follows the expected trajectory, a Patriot missile is fired to intercept it.
The weapons control computer uses an internal clock to keep track of time and
perform the calculations of the trajectories of the detected objects. The time
is stored in 24-bit variables (registers) in increments of 0.1 seconds. In the
binary system, however, (0.1)10 = (0.0001100011...)2 and hence any calculation
involving this time increment needs to be rounded. On February 25, 1991,
after approximately 300 hours of continuous operation, the control computer
had accumulated enough rounding error that it did not predict accurately the
trajectory of the Scud missile. As a result, the missile was not identified and a
Patriot was not fired to intercept it.

In this code, NTERM is the total number of terms and VALUE is the value of each
one. At the end of the calculation, the algorithm prints the average as well as the
relative error with respect to its true value.

Figure 2.2 shows the absolute value of the relative error in the calculation of the
average, as a function of the number of terms in the sum. Because of rounding errors,
the relative error in the average value is sometimes negative, sometimes positive,
and when the various rounding errors cancel out, it can even be very close to zero.
In the figure, the relative error appears to a have a quasi-periodic dependence on
the number of terms only because all terms are equal to each other. In a more
general situation, in which each term of the sum is different from the others, this
would not be the case.

Overall, the absolute value of the relative error increases rapidly as the number
of terms in the sum increases. When the number of terms grows to ≥ 108, the sum
takes values as large as 108 × 0.1 = 107, before the final division with the number
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Figure 2.2: The absolute value of the relative error in the calculation of the sum (2.6) as a
function of the number of terms included. The value of each term is set equal to 0.1. The curve
on the top shows the amplification of rounding errors for the naive algorithm that computes the
direct sum. The curve at the bottom shows the significant improvement introduced by the Kahan
summation formula.

of terms N . At this point, the addition of more terms does not increase the value
of the sum, since the ratio of each term to the sum is smaller than the machine
accuracy. Indeed, 107 + 0.1 ≃ 107, when the machine accuracy is 10−7, as in the
case of single precision numbers. Beyond this point, the sum does not increase
proportionally to the number of terms, the value of the calculated average sharply
decreases, and the relative error becomes equal to unity. The simple calculation of
an average produced a result with 100% error, even though each term of the sum
was larger than the machine accuracy by many orders of magnitude.

In order to improve the accuracy with which we evaluate a large sum, we can, in
principle, perform all the computations with variables of type double, for which the
machine accuracy is ≃ 2 × 10−16. We will study here, however, another technique
often referred to as the Kahan summation formula[6], which will expose in a lucid
way the problems of the direct summation algorithm we studied in the previous
example.

In general, the direct sumKahan Summation
Formula

SN =
N∑

i=1

xi (2.7)

can be cast in the form of the recursive formula

S1 = x1

Si+1 = Si + xi+1 , (2.8)

where Si is the sum up to the i-th term. In the Kahan algorithm, the sum is
corrected at each step according to

x′
i+1 = xi+1 − ci

Si+1 = Si + x′
i+1 , (2.9)

where ci is a correction factor evaluated at the previous step with the recursive
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relation

c1 = 0

ci = [(Si−1 + x′
i)− Si−1]− x′

i . (2.10)

Mathematically speaking, all the terms at the right-hand-side of the last equation
cancel out identically, leaving ci = 0 at all times. This is not true, however, in
floating point arithmetic, if we enforce the result of the operation in each parenthesis
of bracket to be rounded before the next operation is performed.

In floating point arithmetic, the term (Si−1 +x′
i) is first evaluated and the result

is rounded. Subtracting from this the original value of Si−1 leaves as a result only
the part of the term x′

i that contributed to the rounded sum. Subtracting finally
from this the original value of x′

i returns the part of the term x′
i that was rejected

during the rounding process. This is the correction factor ci that will be applied
at the next step of the recursive process in an attempt to add back to the sum the
part of the last term that was discarded in the rounding process.

We can rewrite now the algorithm of the previous example in order to evaluate
the sum using the Kahan summation formula as

#include <stdio.h>
/* evaluate a large sum with the Kahan

summation formula */
#define NTERM 10 // number of terms
#define VALUE 0.1 // value of each term

int main(void)
{

int index;
float xprime, c=0.0, sum_interm;
float sum,error;

sum=VALUE; // first term
// for all other terms

for(index=2;index<=NTERM;index++)
{

xprime=VALUE-c; // correct each term
sum_interm=sum+xprime; // temporary storage
c=(sum_interm-sum)-xprime; // new correction
sum=sum_interm;

}
sum/=NTERM; // divide by total number of terms
error=(sum-VALUE)/VALUE; // relative error
printf("Sum=%g Relative error=%g\n",sum,error);
return 0;

}

Figure 2.2 demonstrates the improvement in the calculation of a large sum that
is offered by the Kahan summation formula. Indeed, the rounding errors do not get
amplified and, even after the addition of hundreds of millions of terms, the relative
error in the average is at most equal to the machine accuracy. In a later chapter,
the Kahan formula will prove valuable in dealing with rounding errors when we will
study the numerical evaluation of definite integrals.
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The success of the Kahan summation formula relies on the fact that floatingFloating Point Addition
is not Associative point addition is not associative, i.e.,

(a + b) + c ̸= a + (b + c) (2.11)

If this were not the case, then the correction term in equation (2.10) would be equal
to

ci = [(Si−1 + x′
i)− Si−1]− x′

i = (Si−1 − Si−1) + (x′
i − x′

i) = 0 (2.12)

and there would be no improvement in the accumulation of errors compared to the
direct summation. The Kahan summation formula is indeed exploiting the non-
associative character of floating point addition to correct for the rounding errors.

There are several situations, however, in which changing the order of evaluation
of algebraic operations leads to results that are qualitatively and quantitatively
different. Consider, for example, the simple sum

I = eτ − (eτ − 1) , (2.13)

which is, of course, equal to unity, independent of the value of τ . If we evaluate this
sum with single-precision floating numbers, we obtain I = 1 only when τ <= 44.
For larger values of the parameter τ , the term eτ is much larger than one and hence
(eτ − 1) ≃ eτ because of rounding. As a result, I ≃ eτ − eτ = 0, which has a
relative error of 100%! This is, in fact, a general problem of computations that
involve the addition or subtraction of numbers that have very different magnitudes.
In the following example (taken from reference [7]), we will study this problem in
calculating the roots of a simple quadratic equation.

Example: Roots of the quadratic equation

In Chapter 1 (page 1-15), we developed a simple algorithm that calculates the
roots of the quadratic equation.

ax2 + bx + c = 0 . (2.14)

When a ̸= 0, and the discriminant ∆ ≡ b2 − 4ac ≥ 0, this equation has the two
roots

x1,2 =
−b ±

√
b2 − 4ac

2a
. (2.15)

In order to explore how rounding errors affect the computation of these roots,
we will consider the case for which the parameter b is positive and b2 ≫ 4ac, so
that the discriminant is always positive. Figure 2.3 shows the root with the positive
sign as a function of the parameter b, when a = −1 and c = 1. The blue line
corresponds to the value of the root calculated using single-precision floating point
arithmetic, whereas the red line corresponds to the true value of the root. When
the values of the three parameters, a, b, and c are all comparable to each other, the
numerical computation of the root is well behaving. However, when the parameter
β is significantly larger than the others, the rounding process leads to unacceptable
errors.

We can understand the cause of the large rounding errors when b2 ≫ 4ac by
first approximating the square root of the discriminant as

√
∆ = (b2 − 4ac)1/2 = b

(
1− 4ac

b2

)1/2

≃ b− 2ac

b
+ ... . (2.16)
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Figure 2.3: One of the roots of the quadratic equation −x2 + bx + c = 0 plotted as a function
of the parameter b. The red line shows the true value of the root, whereas the blue line shows the
value calculated with single-precision floating point arithmetic using equation (2.15). For large
values of the parameter b, the floating point computation introduces very large errors.

In the last step, we used the approximation (1 + ϵ)n ≃ 1 + nϵ + ..., which is valid
when ϵ≪ 1. The two roots of the quadratic equation then become

x1 =
−b +

√
b2 + 4ac

2a
≃
−b + b− 2ac

b

2a
=

c

b
(2.17)

and

x2 =
−b−

√
b2 + 4ac

2a
≃
−b− b− 2ac

b

2a
= −b2 + 2ac

2ab
≃ −−b

2a
. (2.18)

Equation (2.17) reveals the problem. The computation of the numerator −b +
√

∆ Catastrophic
Cancellationinvolves the subtraction of two very large numbers, b and

√
∆, that have approxi-

mately equal magnitudes. The result of this subtraction is the very small number
4ac/b. Therefore, even a small relative error in either of the two numbers in the
subtraction leads to a very large relative error in the result. This large amplifica-
tion of relative errors during the subtraction of two large but comparable numbers
is said to be caused by catastrophic cancellation.

The only certain way of avoiding the effects of catastrophic cancellation is by Programming
Tipmanipulating mathematically the troubling expression in order to remove the sub-

traction. For example, in the case of the quadratic equation that we studied above,
we can multiply the numerator and denominator of the root with the positive sign
by −b−

√
∆ to obtain

x2 = − 2c

b +
√

b2 − 4ac
. (2.19)

This expression is mathematically equivalent to equation (2.15) for the root with
the positive sign. However, when b2 ≫ 4ac, it becomes

x2 = − 2c

b + b− 2ac
b

≃ c

b
. (2.20)

and does not involve the subtraction of large but comparable numbers. This math-
ematical manipulation resolved the effects of catastrophic cancellation.
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2.4 Special Situations

In mathematics, not every operation between two real numbers results in a real
number. For example, the square root of a negative number, e.g.,

√
−i, is imaginary.

Moreover, some algebraic operations, such as the division of a real number by zero,
lead to infinities. Early versions of most computer languages would cause a program
to halt when either of the two situations occurred during a numerical computation.
However, the IEEE 754 standard requires that a computer language does not halt
the calculation, but rather that it generates a special result. These situations are
called floating point exceptions.

Infinity, in floating point arithmetic, is any real number that is too large to beFloating Point
Infinity stored in a variable of a particular type. Consider, for example, the following simple

program
#include<stdio.h>
#include<math.h>

int main(void)
{

float exponent,result;
for (exponent=1.0;exponent<=130.0;exponent++)
{
result=pow(2.0,exponent);
printf("exponent=%f result=%g\n",a,b);

}
return 0;

}
which prints on the screen successively increasing powers of two. When the variable
exponent attains very large values, the result of the operation pow(2,exponent)
becomes too large to be stored in a variable of type float. The calculation, however,
is not stopped, but rather the last four lines of the output on the screen are

exponent=127.000000 result=1.70141e+38
exponent=128.000000 result=inf
exponent=129.000000 result=inf
exponent=130.000000 result=inf

Note that, according to the IEEE 754 standard, infinity may have a positive or
negative sign. If we change for example the line of the above program that performs
the calculation to

result=-pow(2.0,exponent);
the last four lines of the output will be

exponent=127.000000 result=-1.70141e+38
exponent=128.000000 result=-inf
exponent=129.000000 result=-inf
exponent=130.000000 result=-inf

There are two main reasons for which the IEEE 754 standard requires that a
computer program is not stopped by a floating point exception but is allowed to
continue. First, in several critical situations, a well written computer program can
identify the reason that led to a floating point exception and correct it appropriately.
Consider for example the failure of the Ariane 5 rocket discussed in the box of
page 2-7. In such a situation, halting the execution of the program that controls
the guidance of a rocket is catastrophic, whereas identifying and correcting the
problem can save a very expensive launch from failure.
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Second, there are several well defined arithmetic operations with infinities that
result in real numbers. For example, the function

f(x) =
1

1 + x
(2.21)

is well defined and, in fact, is equal to one, when x → ∞. Halting the execution
of a computer program in such a case would be counterproductive. In order to
investigate whether this generates a floating point exception or not, we can change
the line of the above program that performs the calculation to

result=1.0/(1.0+pow(2.0,exponent));
The program will generate the correct result, even though the intermediate step
pow(2.0,exponent) has resulted in an infinity for large values of the variable
exponent.

We need, here, to be very careful when we allow for infinities to take place in NAN
numerical computations, since a computer language can not keep track of how fast
an expression reaches infinity. For example, the function

g(x) =
x + 1
x2 + x

(2.22)

is well behaving in mathematics when x→∞ since

lim
x→∞

g(x) = lim
x→∞

1
x + 1

= 1 , (2.23)

even though both the numerator and the denominator become very large. This
is not true, however, in floating point arithmetic. Changing the line in the above
program that performs the calculation to

result=pow(2.0,exponent);
result=result/(result*result+result);

returns another special code, nan. This special code stands for not-a-number and
occurs when the result of an algebraic computation is not well defined or is not a real
number Operations that return nan involve calculations of the form∞−∞, 0×∞,
0/0 and ∞/∞, all of which are undefined in mathematics. Moreover, operations
such as taking the square root or the logarithm of a negative number also result in
nan. Contrary to the case of infinities, no calculation that involves the special code
nan can have a real number as a result. If we anticipate that, under some special
circumstances, such a floating point exception may occur, we need to protect our
program from returning a nan via the use of branching statements such as if or
do while.
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