
Chapter 3

Code Development

In this chapter we will

• discuss the development of algorithms for solving real-world problems.

• study strategies for testing, verifying, and validating algorithms.

• evaluate the uncertainties of computational models

Our main goal throughout this book will be to develop and implement accurate al-
gorithms that will allow us to solve problems encountered in the real world. Several
decades of experience have shown that the success of our endeavor is not determined
only by our ability to program in any computer language. What guarantees our
success is, in fact, the effort we devote in analyzing the problem before we even start
typing the first lines of code as well as the time we spend verifying and validating
our approach after we finish coding.

In general, the development of a successful algorithm to solve a problem of the
physical world follows three basic steps (see Figure 3.1) :
From the real world to a mathematical model.—Digital computers allow us to solve
problems that are too difficult to be addressed using traditional analytical tech-
niques. However, physical systems in the real world are often too complex and
interconnected even for a computer to handle. In many situations, we may be able
to write, in principle, the exact equations that describe every single phenomenon
and interaction in a particular physical system. Our computers, however, almost
never have the capabilities to solve them all.

Consider, for example, the simulation of air currents in a room. There are
approximately 1028 molecules of nitrogen and oxygen, as well as a trace of other
elements in a typical room. The motion of each molecule can be described by
six differential equations: three for the time evolution of the coordinates of each
molecule and three for each component of its velocity. In total, we would need
to solve simultaneously about 1029 equations in order to simulate completely the
motion of air in the room. In order to simply store the positions and velocities of
each molecule at any given time, let alone solve the corresponding equations, we
would need many trillions of Petabytes of memory. This is, of course, beyond the
capabilities of even the largest and fastest computers to date.

In order to solve a problem from the physical world using a digital computer,
we often have to make a number of simplifications and approximations. We first

3-1

3-2 CHAPTER 3. CODE DEVELOPMENT IN COMPUTATIONAL PHYSICS

Figure 3.1: The three major steps in the development of a computational algorithm (adapted
from Refs. [1] and [2]).

have to study all the phenomena that occur in the real system and, after careful
analysis, identify those that are the most important in determining the evolution of
the system. We often need to use statistical methods or empirical models to describe
the collective effects of large ensembles of particles without having to model each
particle individually. Finally, we use analytical estimates to motivate and justify our
choices. Our aim in this first step is to develop an idealized mathematical model of
a physical system that encompasses all the important phenomena of the real world
but is not burdened by unnecessary complications.
From a mathematical to a computational model .—The equations of even an idealized
mathematical model are seldom in a form suitable to be handled with a digital
computer. As we discussed in the previous chapter, computers are notorious in
their inability to perform calculations with very small or very large numbers such
as those involved in most physical constants. Moreover, digital computers can only
manipulate discrete objects and numbers and not the continuous functions that we
often use in our description of physical phenomena.

Our aim in this second step is to develop an efficient technique that will allow
us to handle the equations of the mathematical model with a digital computer. We
identify, for example, the natural physical units of our problem in order to remove
very small or very large numbers from the equations. We choose the coordinate
system(s) to use, based on the symmetries of the problem or other considerations.
We identify the proper method of discretizing the continuous functions that we wish
to calculate over a discrete set of representative grid points as well as the particular
numerical algorithm that we will use to solve the problem. We evaluate the storage
requirements of the algorithm and assess various techniques of storage and data
mining. Finally, we choose the digital computer as well as the computer language
we will use, based on the requirements of the computational model. At this point
only, we begin writing the program in order to implement the chosen algorithm on
our computer.

3.1. SETTING UP A NUMERICAL PROBLEM 3-3

The Birth of the Algorithm
The word algorithm derives from the name of the Persian astronomer and math-
ematician Muhammad ibn Musa al-Khwarizmi (∼780–850). In 825 AD, he wrote
a treatise in Arabic titled On Calculation with Hindu Numerals . It was trans-
lated into Latin in the 12th century with the title Algoritmi de numero Indorum
and it was one of the original books that introduced the modern-day numerals
to the western world. The latin transliteration of his name and its similarity
to the greek word αριθµos, which means “number”, is responsible for the word
algorithm that soon afterwards entered the vocabulary of western mathemati-
cians. In its modern use, it describes a set of well defined mathematical steps
that, when applied to a set of initial data, generate a desired outcome.

A key ingredient of the second step of code development is the verification of
the computational algorithm. Our goal here is to ensure that the computational
model is a good representation of the idealized mathematical model. We first en-
sure that the coding is free from typographical or other formal programming errors.
We then follow a number of techniques that push our algorithm to the limits of
its validity. We devise problems with known analytic solutions, which we compare
against the computational results. We verify that our algorithm satisfies conser-
vations laws and does not break imposed symmetries on problems. Finally, we
study limitations of the algorithms because of the amplification of round-off errors,
discritization errors, etc.
From a computational model to reality.—Having developed a computational model,
we are now in the position to use it in order to understand real physical systems
or predict the outcome of phenomena in situations that we have not been explicitly
observed.

The key ingredient of this last step in code development is the validation of the
idealized mathematical and computational models. In order to check the validity
of our assumptions and approximations we need to compare the results of our
calculations directly to experiments. Failure of our simulations to describe a real
physical system will signify an insufficient mathematical model and require for the
whole process to be repeated.

Several of the steps in the sequence described above are the same whether we
are addressing a particular problem using analytical or numerical means. In this
chapter, we will study in some detail those steps that are specific to or especially im-
portant for solving physical problems with a digital computer. A number of review
articles, cited at the end of the chapter, provide a wealth of additional information
and references for future reading. The book Code Complete: A Practical Handbook
of Software Construction by S. McConnel[3] also contains a remarkable collection
of examples that illuminate various aspects of code development.

3.1 Setting up a Numerical Problem

The beauty of our physical theories lies in the fact that they involve only a small
number of equations that we use to describe phenomena occurring over a vast range
of scales. For example, we use Newton’s laws to model both the trajectory of a
baseball that leaves the hand of a pitcher as well as the motion of galaxies in the
Universe. In the former case, we discuss the lengths and times involved in terms
of feet and seconds, whereas in the latter case we use kiloparsecs and megayears,
respectively.

Identifying the natural units with which to describe the behavior of a particular Natural
Units

3-4 CHAPTER 3. CODE DEVELOPMENT IN COMPUTATIONAL PHYSICS

physical system is one of the key ingredients in developing a successful and efficient
computational algorithm. In most cases, these are not physical units defined a priori,
such as feet or kiloparsecs. Instead, they are characteristic scales in the problem
that are constructed by proper combinations of the various physical quantities or
of the boundary conditions that appear in the equations.

The process of identifying the natural units of a problem is specific to each
particular situation. In the following two examples, as well as throughout the
remaining chapters, we will explore the basic strategies we may follow and discuss
their advantages.

Example: Blackbody radiation and Wien’s displacement law

The spectrum of radiation that is in thermodynamic equilibrium with the walls
of an insulated cavity, also known as blackbody radiation, was one of the key
experimental results that led to the development of quantum mechanics. Contrary
to the predictions of classical physics, the measured spectrum of radiation did not
continue to rise towards short wavelengths but rather peaked at a wavelength that
was inverserly proportional to the temperature of the cavity. This result is formally
described by Wien’s displacement law

λmax ≃ 1.97
(

T
◦K

)−1

cm . (3.1)

Using the fact that the wavelength of light is related to its frequency ν and the
speed of light c by the relation c = λν, we can also express Wien’s displacement
law as

νmax =
c

λmax
≃ 5.9× 1010

(
T
◦K

)
Hz . (3.2)

The absence of the predicted infrared catastrophe was explained by Max Planck
in 1901 by requiring that photons are quanta, with an energy E proportional to
their frequency ν, i.e., E = hν. In this last expression, the constant h = 6.627 ×
10−34 m2 kgr s−1 is the Planck constant. The blackbody spectrum calculated by
Planck is given by the expression

I(ν)dν =
2hν3

c2

1

exp
(

hν
kBT

)
− 1

dν , (3.3)

where the specific intensity I(ν)dν measures the amount of energy per unit surface
area, per unit time, per unit solid angle emitted in the frequency range between ν
and ν + dν. In this expression, kB ≡ 1.38× 10−16 J ◦K−1 is Boltzmann’s constant.

Figure 3.2 shows the blackbody spectrum for a few representative values of
the temperature. We can easily see that, for each temperature, the spectrum of
blackbody radiation indeed peaks at a particular photon frequency that increases, in
general, with temperature. Our aim, in this example, is to find the photon frequency
of maximum intensity and prove that it follows the empirical displacement law (3.2)
obtained by Wien.

We first rewrite the expression for the blackbody spectrum in terms of its natural
units. The expression has one dependent variable, the photon frequency ν, and one
independent variable, the specific intensity I(ν). As a result, we will need to define
natural units for the frequency and for the specific intensity. The expression also
involves one parameter, the temperature T , and three physical constants, the Planck
constant h, the speed of light c, and the Boltzmann constant kB.

3.1. SETTING UP A NUMERICAL PROBLEM 3-5

Figure 3.2: The spectrum of blackbody radiation for three different values of the temperature.
The frequency of maximum specific intensity increases with temperature according to the Wien
displacement law.

The table below summarizes the variables, parameters, and constants that ap-
pear in the expression for the blackbody spectrum together with their physical
units. In order to facilitate the definition of characteristic scales, we have written
the units of the various quantities in terms of fiducial units for mass [M], length,
[L], time, [T], and temperature, [Θ].

Physical Quantities in the Blackbody Spectrum
Quantity Units

Variables ν [T]−1

I [M][T]−1

Parameter T [Θ]
Constants h [M][L]2[T]−1

c [L][T]−1

kB [M][L]2[T]−2[Θ]−1

In principle, we can try various combinations of the parameter and the constants
in the expression in order to obtain a natural unit for frequency and one for spe-
cific intensity. We can reduce, however, the number of trials by realizing that the
arguments of exponential functions, logarithms, and trigonometric functions have
to be dimensionless quanties. As a result, the ratio hν/kBT that appears as the
argument of the exponential in the denominator of the blackbody function must be
a dimensionless quantity. This implies that a good natural unit for frequency in
this problem is

ν0 ≡
kBT

h
(3.4)

Defining the dimensionless frequency ν′ ≡ ν/ν0, we can, therefore, rewrite the
expression for the blackbody spectrum as

I(ν′)dν′ =
(

2k4
BT 4

h3c2

)
ν′3

exp(ν′)− 1
dν′ , (3.5)

Inspecting the units of the two fractions in the right-hand-side of this last expression,
we also conclude that the fraction in the parenthesis has the same units as the

3-6 CHAPTER 3. CODE DEVELOPMENT IN COMPUTATIONAL PHYSICS

specific intensity. We, therefore, chose for the natural unit of specific intensity the
ratio

I0 ≡
2k4

BT 4

h3c2
. (3.6)

We then define the dimensionless specific intensity I ′ ≡ I/I0 and rewrite the ex-
pression for the blackbody spectrum as

I ′(ν′)dν′ =
ν′3

exp(ν′)− 1
dν′ . (3.7)

In order to find the dimensionless frequency ν′
max for which the specific intensity

has a maximum, we calculate the first derivative of the above expression with respect
to frequency and set it to zero. The result is

dI ′

dν′ νmax

= 0⇒ ν′2
max

(3− ν′
max) exp(ν′

max)− 3
exp(ν′

max)− 1
= 0 . (3.8)

We note that ν′
max = 0 is always a solution to the problem but is not the one we

are interested in. Moreover, the presence of the denominator does not affect the
solution. As a result, in order to find the frequency of the maximum intensity of
the blackbody function, we only need to solve the simpler equation

(3 − ν′
max) exp(ν′

max)− 3 = 0 . (3.9)

This is an equation that we cannot solve analytically and, therefore, need to employ
a numerical algorithm, such as those that we will study in the following chapters.
The solution is

ν′
max = 2.8214... (3.10)

and hence the maximum of the specific intensity occurs at the frequency

νmax ≃ 2.8
kBT

h
≃ 5.9× 1010

(
T
◦K

)
Hz , (3.11)

which is nothing but Wien’s displacement law.

We cannot overemphasize here the importance of recasting our problem in di-
mensionless variables and of simplifying the final equation we need to solve. In the
previous example, this procedure offered us three important benefits, even though
it required considerable effort before we even sat in front of the computer,

First, the final equation (3.9) that we had to solve numerically was simple and
involved only coefficients of order unity. All the very small or very large numbers
of the original expression, such as the Planck constant and the speed of light, dis-
appeared. This guaranteed that, for all practical purposes, the final solution would
also be of order unity. Moreover, it minimized the possibility that our algorithm
would straggle with underflows, overflows, or rounding errors, although we could
never be sure of the latter; unfortunately, it is often that case that an apparently
benign equation has hidden cancellations and divisions by zero!

Second, even though our original aim was to calculate the frequency of maximum
intensity as a function of temperature, our final task involved the solution of only
a single algebraic equation. This significantly reduced the computational resources
required to solve the problem.

Finally, we effectively proved that the frequency of maximum intensity has to
be proportional to temperature, as required by the Wien displacement law, before

3.1. SETTING UP A NUMERICAL PROBLEM 3-7

Figure 3.3: The set up for describing the motion of a projectile in a uniform gravitational field.

even solving numerically the last equation. We achieved this by defining the dimen-
sionless frequency in terms of the temperature of the blackbody (see equation 3.4)
and by eliminating the later from the final expression. Indeed, since the final equa-
tion (3.9) does not involve any physical constants or variables, its solution will be a
single real number. Therefore, when dimensions are restored, the frequency of the
maximum in the blackbody function will have to be proportional to temperature.
As is often the case, we understood the physics of the problem by working with
paper and pencil. We then simply used the computer to calculate the exact value
of a constant that we, nevertheless, expected to be of order unity!

Example: Projectiles in a uniform gravitational field

As a second example, we will set up the calculation of the trajectory of a pro-
jectile launched from the Earth’s surface.

Assumptions and empirical models.—We will consider only relatively short tra-
jectories, so that we can assume that the gravitational field is uniform, and neglect
the effects of the Earth’s rotation. We will also employ an empirical model for the
aerodynamic drag the projectile experiences during its motion through the air. In
this model the aerodynamic drag force is antiparallel to the velocity vector of the
projectile and its magnitude is proportional to the square of the velocity, i.e.,

F⃗d = −b |u⃗| u⃗ . (3.12)

The coefficient b depends on the shape and size of the projectile, as well as on the
density of air, and its physical units are [M][L]−1. Experiments have shown that
this model describes accurately the aerodynamic drag experienced by a subsonic
projectile.

Equations and coordinate system.— The motion of the projectile is affected by
two forces: gravity that acts along the vertical direction and aerodynamic drag that
acts along the instantaneous velocity of the particle. As a result, the trajectory of
the projectile will always be on the plane that is defined by the vertical direction
and the initial velocity vector. We will solve our problem on that plane, on which

3-8 CHAPTER 3. CODE DEVELOPMENT IN COMPUTATIONAL PHYSICS

we set a Cartesian coordinate system with the x axis along the horizontal direction,
the y axis along the vertical direction, and the zero point of the coordinate system
at the initial position of the projectile.

The differential equation that describes the motion of the particle is given by
Newton’s second law. In vector form, we can write this equation as

m
d2r⃗

dt2
= F⃗g + F⃗d

= −mg⃗ − b |u⃗| u⃗ . (3.13)

Here g⃗ is the gravitational acceleration, m is the mass of the particle, r⃗ = xx̂ + yŷ
is the position vector of the projectile, (x, y) are its Cartesian coordinates, and x̂
and ŷ are the unit vectors along the x− and y−directions.

Expressing the gravitational acceleration and velocity vectors in terms of their
coordinates as g⃗ = −gŷ and u⃗ = uxx̂+uyŷ, the differential equations for the motion
become

d2x

dt2
= − b

m

(
u2

x + u2
y

)1/2
ux (3.14)

d2y

dt2
= −g − b

m

(
u2

x + u2
y

)1/2
uy . (3.15)

Here we have used the Pythagorean theorem to express the magnitude of the velocity
vector in terms of its components as

|v⃗| =
(
u2

x + u2
y

)1/2
. (3.16)

The differential equations (3.14) and (3.15) are second-order in time and, therefore,
require four initial conditions: the two components of the position and velocity
vectors. By construction, the initial position of the projectile is at the origin of the
coordinate system and hence we set

x(t = 0) = 0 (3.17)
y(t = 0) = 0 . (3.18)

We finally allow for the two components of the initial velocity to have arbitrary
values, i.e.,

ux(t = 0) = ux0 (3.19)

uy(t = 0) = uy0 . (3.20)

The differential equations (3.14) and (3.15) together with the boundary condi-
tions (3.17)–(3.20) uniquely specify the motion of the projectile.

Natural units and dimensionless equations.—In order to identify the natural
units for this problem, we begin by considering the units of the independent and
dependent variables, as well as of the initial conditions and the parameters that
appear in the equations. In this problem, there is one independent variable, the
time t with units of time, and two dependent variables, the coordinates x and y,
with units of length. We, therefore, need to identify a natural unit for time and one
for length.

The table shown in the following page summarizes the various physical quantities
in the problem and their units. Using this set of quantities, there are two possibilities
of defining a natural unit of time, since both the quantities m/(buy0) and uy0/g have
units of time. (Note that, in these equations, we could have used the initial velocity

3.1. SETTING UP A NUMERICAL PROBLEM 3-9

Physical Quantities for Calculating Projectile Trajectories
Quantity Units

Variables t [T]
x [L]
y [L]

Initial ux0 [L][T]−1

Conditions uy0 [L][T]−1

Parameters m [M]
b [M][L]−1

g [L][T]−2

in the x-direction, as well.) In order to choose among the two possibilities, we will
use our understanding of the physics of the problem. The timescale defined by the
quantity m/(buy0) is the characteristic time for the air resistance to slow down the
projectile. On the other hand, the timescale defined by the quantity uy0/g is the
characteristic time for gravity to accelerate or decelerate the projectile. For most
applications, gravity is the dominant force and the latter timescale is the fastest.
We, therefore, choose as a unit of time the quantity

t0 ≡
uy0

g
. (3.21)

It is then natural that we identify the quantity

l0 ≡
u2

y0

g
(3.22)

as our unit of length and the quantity

u0 ≡ uy0 (3.23)

as the unit of velocity.
Armed with the identification of the natural units for this problem we may now

define the set of dimensionless quantities

t′ ≡ t/t0 (3.24)

x′ ≡ x/l0 (3.25)

y′ ≡ y/l0 (3.26)

u′
x ≡ ux/u0 (3.27)

u′
y ≡ uy/u0 (3.28)

and convert the system of equations (3.14)–(3.15) to

d2x′

dt′2
= −A

(
u′2

x + u′2
y

)1/2
u′

x (3.29)

d2y′

dt′2
= −1−A

(
u′2

x + u′2
y

)1/2
u′

y . (3.30)

In these equations we have used a new dimensionless parameter that we defined as

A ≡
bu2

y0

mg
. (3.31)

This parameter measures the ratio of the characteristic aerodynamic drag force to
the gravitational force exerted on the particle. When A = 0, the trajectory of the
projectile is unaffected by aerodynamic drag. As the value of the parameter A
increases, the relative importance of the drag force increases as well.

3-10 CHAPTER 3. CODE DEVELOPMENT IN COMPUTATIONAL PHYSICS

The dimensionless initial conditions that are required to specify uniquely the
trajectory of the particle are

x′(t = 0) = y′(t = 0) = 0 (3.32)

u′
x(t = 0) =

ux0

uy0
≡ cot θ (3.33)

u′
y(t = 0) =

uy0

uy0
= 1 . (3.34)

These are the equations that we will need to solve with one of the numerical tech-
niques for handling ordinary differential equations that we will discuss in a later
chapter.

The above example illustrates again the advantages of properly setting up a
numerical method and of identifying the natural units of a physical problem. The
solution to the initial set of equations required the specification of four initial con-
ditions, i.e., the two components of the initial position and velocity vectors, and of
three parameters: the coefficient b of the aerodynamic drag force, the mass m of the
projectile, and the local gravitational acceleration g of the location from which the
projectile is launched. Studying the trajectory of the projectile under all possible
conditions would, therefore, require exploring a seven-dimensional parameter space,
which is a demanding computational task. Indeed, assuming, as an example, that
we would like to perform a calculation for 10 representative values for each of the
seven parameters and initial conditions would require that we complete a total of
107 calculations.

On the other hand, by properly aligning the axes of the coordinate system and
by identifying the natural units of the problem, the final set of equations depends
only on the single dimensionless parameter A and on one boundary condition (equa-
tion 3.33), which is related to the angle θ between the initial velocity vector and the
horizontal axis. As a result, we can investigate the complete behavior of the same
physical system by exploring only a two-dimensional parameter space. Assuming
again that we would like to perform a calculation for 10 representative values of
the parameter and of the initial condition would require that we complete a total
of only 100 calculations. The proper numerical set up has, therefore, reduced the
total number of computations by a factor as large as 105!

3.1.1 Code Verification

In the early days of computer programming it was often said that “a computer code
that runs correctly on the first trial is so trivial that is not worth writing”. Indeed,
it is practically impossible to develop a computer program without introducing
inadvertently a multitude of errors. Moreover, there are always undocumented
pitfalls in every numerical method that we use, which we usually find by trial and
error. The process in which we identify and correct errors in our programming is
called code verification.

A coding error, which is commonly referred to as a bug, may be something as
simple as a typographical or a bookkeeping mistake. Using variable names that
are very similar to each other or not being careful with the use of indices in arrays
are among the most common sources of such errors. Several studies of commercial
software have found that a fraction as large as 18− 36% of all coding errors can be
traced to typographical or bookkeeping mistakes[3].

3.1. SETTING UP A NUMERICAL PROBLEM 3-11

The First Real Computer Bug

In modern computer jargon, a bug is a mistake introduced in-
advertently in an algorithm that prevents it from completing
its execution or from providing accurate results. The process
of correcting an algorithm from such mistakes is called de-
bugging. Although this term is used figuratively today, the
operation of early computers was often affected by insects fly-
ing between their vacuum tubes! The first “real” computer
bug was found in 1947, in the computer Mark II at Harvard
University. Computer engineers taped the bug in their log-
book, which can be found today at the Smithsonian Museum
of American History.

In the opposite extreme, a coding bug might arise from a complex logical error
that appears only when a very particular set of conditions exists. For example,
several techniques for solving numerically algebraic equations of the form f(x) = 0
fail when the function f(x) has a local maximum or minimum in the domain of
solution. These logical mistakes are typically the hardest to identify and correct.

Although good programming practices reduce significantly the number of coding
bugs in a computer program, it is practically impossible for any amount of verifica-
tion to lead to an algorithm that is completely debugged. Throughout the computer
industry, an average of 1 to 25 bugs per 1000 lines of code remain unidentified even
after the software has been extensively tested and released for public use[3]. In
computational physics and engineering, a very similar rate of serious faults can be
found in computer codes that are widely used (see box in the following page). The
moral of the story is that code verification has to be a continuous process that does
not stop even after the code has been used in producing results.

A second important lesson in code verification learned after decades of experience
in the computer industry is that no single method of debugging is sufficient to detect
the vast majority of defects in any given piece of computer software. Techniques
that range from informal code reviews between co-workers all the way to extensive
testing by sample users (often called beta testing) are capable of detecting only
as much as ∼ 40% of coding bugs[4]. It is only when a combination of different
techniques is used that as much as 95% of coding bugs have been identified in some
of the most successful software packages.

There exist a large number of strategies developed and books written on ways
of testing efficiently computer codes. The classic monograph The Art of Software
Testing by G. J. Myers[5] as well as more recent books[3,6] offer a wide range of
suggestions and case studies that are relevant to general computer algorithms. In
the remaining of this chapter, as well as throughout this book, we will consider
only those aspects of verification that are particular to computational physics and
engineering[1,7,8].

3.1.2 Validation

Further Reading

1. Terminology for Model Credibility, by S. Schlesinger et al., Simulation, 32, 103
(1979)

3-12 CHAPTER 3. CODE DEVELOPMENT IN COMPUTATIONAL PHYSICS

No code is perfect; some are not nearly correct!

In 1997, an experiment was conducted that aimed to investigate the number
of serious faults found in mature computer codes used in a very large number
of disciplines, from medical imaging to aerospace[4]. More than 100 computer
packages were analyzed with a combined total of more than 5 million lines of
computer code in C and in Fortran. All of these packages were considered to
have been fully tested by their developers.
A static analysics was performed on each package and every identified fault was
given an appropriate weight, depending on its severity. The following figure,
which was adopted from the study, shows that 1 to 25 serious faults per 1000
lines of code are commonplace in computational physics and engineering. One
particularly disturbing result involves a package in nuclear engineering, which
reached 140 faults per 1000 lines of code. As the author of the study remarked,
this code “in spite of the aspirations of its designers, amounted to no more than
a very expensive random number generator”.

2. Verification, Validation, and Predictive Capability in Computational Engineering
and Physics , by W. L. Oberkampf, T. G. Trucano, & C. Hirsch, Sandia National
Laboratory Report SAND2003-3769 (2003).
3. CODE Complete: A Practical Handbook of Software Construction, by S. Mc-
Connel (Microsoft Press), 2nd ed., (2004)
4. The T-Experiments: Errors in Scientific Software, by L. Hatton, IEEE Comp.
Science and Engineering, 4, 2, 27 (1997).
5. The Art of Software Testing, by G. J. Myers (Wiley) 1979.
6. Testing Computer Software, by C. Kaner, J. Falk, & H. Q. Nguyen (Wiley) 2nd
ed. (1999).
7. Verification and Validation in Computational Science and Engineering, by P. J.
Roache (Hermosa Pubs., 1998)
8. Review of Code and Solution Verification Procedures for Computational Simula-
tions , by C. J. Roy, Journal of Comp. Physics, 205, 131 (2005).
9. Quantification of Uncertainty in Computational Fluid Dynamics, by P. J. Roache,
Annual Rev. of Fluid Mech., 29, 123 (1997).

3.1. SETTING UP A NUMERICAL PROBLEM 3-13

Figure 3.4: The various steps of verifying a computational physics algorithm (based on Refs. [2]-
[5]).

