
Chapter 4

Roots of Algebraic Equations

In this chapter we will

• learn how to solve algebraic equations using the

– Bisection method

– Newton-Raphson method

– Secant method

• introduce the concept of convergence of iterative methods

One of the most obvious uses of computer algorithms in the physical and mathe-

matical sciences is in solving algebraic equations. A computational method often

provides the only way of obtaining the roots of an equation, since analytic solutions

exist only for a handful of cases. In other situations, a computational method may

provide a faster route in obtaining the roots of an equation that has known analytic

solutions.

In this chapter, we will consider general equations of the form

f(x) = 0 , (4.1)

where f(x) is any function of the unknown variable x. Every equations can be

trivially put in this form by subtracting its right-hand side from its left-hand side.

The function f(x) may be an analytic expression in closed form, such as

f(x) = xex − 1 . (4.2)

Alternatively, it may be a complicated computational procedure that returns a real

number for each value of the argument x. In this chapter, we will consider only

equations that involve real quantities and search for roots that are real numbers.

A root x0 of an equation f(x) = 0 is said to have multiplicity k if there is a Root
Multiplicityfunction g(x) such that

f(x) = (x − x0)
kg(x) . (4.3)

Alternatively, a root x0 of an equation f(x) = 0 is said to have a multiplicity k if

the k−th order derivative of the function f(x) evaluated at x0 is zero, i.e., if

dkf(x)

dxk

∣

∣

∣

∣

x0

= 0 . (4.4)

4-1

4-2 CHAPTER 4. ROOTS OF ALGEBRAIC EQUATIONS

Figure 4.1: An example of functions that have a root of multiplicity (left) one, (center) two,
and (right) three.

Figure 4.1 shows a few illustrative examples of functions with roots of multiplicity

one, two, and three. In general, a double root corresponds to a function that is

tangent to the x−axis, whereas a root of multiplicity three or higher corresponds

to a function that has an inflection point on the x−axis.

4.1 The Bisection Method

This is the simplest and most robust method for finding the root of an equation,

provided that we can guess an initial interval in which one and only one root exists.

The algorithm successively divides the interval in half (bisects) keeping the solution

within its limits, until it reaches a desired level of accuracy. The main drawback of

the method is its slow rate of convergence.

The bisection algorithm is based on the intermediate value theorem:

Consider a function f(x) that is continuous in the interval [a, b] with f(a)·f(b) < 0.Intermediate
Value Theorem Then, there exists a value x0 in the interval [a, b] such that f(x0) = 0.

In other words, this theorem states that, if a continuous function f(x) changes sign

in the interval [a, b], then there is at least one root of the equation f(x) = 0 within

this interval.

It is worth paying close attention to the requirement that the function f(x) is

continuous in the interval [a, b]. If it is not, then the theorem does not guarantee

the existence of a solution. Consider, for example, the function

f(x) =
1

x − 2
. (4.5)

Clearly, the function changes sign in the interval [0, 4]. However, we cannot apply

the intermediate value theorem for this function, because it is discontinuous at

x = 2. Indeed, there exists no value of x for which f(x) = 0.

When using the bisection algorithm to find iteratively the solution of an equation

of the form f(x) = 0 we take the following steps:

1. We start with an initial interval [a, b] in which we know a priori that the

solution exists

4.1. THE BISECTION METHOD 4-3

Roots of Polynomials

A polynomial of degree n

anxn + an−1x
n−1 + ... + a1x + a0 = 0

with real coefficients has at most n real roots. If the degree is an odd number,
then the polynomial is guaranteed to have at least one real root.
A polynomial of degree 2 is called a quadratic; a polynomial of degree 3 is called
a cubic; a polynomial of degree 4 is called a quartic. General solutions for
polynomials of degree up to four exist in closed form. It can be proved, however,
that there exist no general solutions for polynomials of degree 5 or higher. This
theorem was proved in the early 19th century by the Norwegian mathematician
Niels Hendrik Abel (1802–1829) and the Italian mathematician Paolo Ruffini
(1765–1822).

2. We calculate the midpoint of the interval

xmid =
1

2
(a + b) . (4.6)

3. At this point, we need to decide whether the solution lies in the interval

[a, xmid] or in the interval [xmid, b]. We will use the intermediate value theorem

to make this decision. If

f(a) · f(xmid) < 0 , (4.7)

then the function changes sign in the interval [a, xmid] and, therefore, this is

where the solution lies. In this case, we set b = xmid so that, at the end of this

iteration, the solution lies again in the interval [a, b]. If, on the other hand,

f(a) · f(xmid) > 0 , (4.8)

then we set a = xmid for the same reason.

4. If the width of the interval (b − a) is still larger than the required accuracy,

we go back to step #2, to refine the interval.

5. When the width of the interval (b − a) becomes smaller than the required

accuracy, then we have reached the solution to the equation.

In step #3, we need to pay special attention to what the algorithm does if the

midpoint of the interval happens to be very close to the actual solution, i.e., when

f(xmid) = 0 to within numerical accuracy. In principle, since the algorithm has

reached the solution to the equation, it can simply exit and return this value. How-

ever, this will require the introduction of an additional condition in the main body

of the algorithm, which will slow down its execution considerably. Alternatively, we

can change the condition (4.7) in step #3 to

f(a) · f(xmid) ≤ 0 (4.9)

and proceed with the rest of the algorithm unaltered.

It is important also to emphasize here the fact that the bisection method does

not guarantee that the equation will be satisfied to any accuracy. Indeed, the

algorithm only guarantees that the root of an equation is bracketed to the required

4-4 CHAPTER 4. ROOTS OF ALGEBRAIC EQUATIONS

double foo(double x); // prototype for function f(x)

void bisection(double *lower, double *upper)

/* Uses the bisection algorithm to find the solution to an algebraic

equation of the form f(x)=0 that is known to lie in the interval

[lower,upper]. The form of the equation is provided by the

function foo(x) and is supplied by the user. The parameter

ACCURACY determines the level to which the initial interval will

be refined by successive bisections.

*/

#define ACCURACY 1.0e-6

{

double xmid; // the midpoint of the interval

double a=*lower,b=*upper; // its bounds

do

{

xmid=0.5*(a+b); // calculate midpoint

if (foo(a)*foo(xmid)<=0.0) // if solution is in lower half

b=xmid; // set upper bound=midpoint

else // otherwise

a=xmid; // set lower bound=midpoint

}

while (fabs(b-a)>ACCURACY); // until converged to ACCURACY

*lower=a; // return the bounds

*upper=b;

return;

}

accuracy. We can calculate what this implies for the value of the function f(x) by

evaluating its Taylor expansion from x = a to x = b,

f(b) = f(a) +
df

dx

∣

∣

∣

∣

x=a

(b − a) + ... (4.10)

Neglecting the terms of higher order and rearranging the above expression, we

obtain

|f(b) − f(a)| =

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

x=a

|b − a| . (4.11)

This last equality shows that, at the end of the bisection algorithm, the equation will

be satisfied to the required accuracy only if the function f(x) has a weak dependence

on the variable x, i.e., if |df/dx| ≤ 1. If we need to circumvent this problem, we

can revise step #3 by requiring not only that the interval (b − a) is smaller than

the required accuracy, but that the value of the function evaluated at the midpoint,

f(xmid) is smaller than the accuracy, as well.

A C function that implements the bisection method as discussed here is shown

above. This function requires two arguments, the lower and upper bounds of the

initial guess for the interval in which a unique solution is guaranteed to exist. Upon

completion, the arguments of the function contain the lower and upper bounds of an

interval with a width that is determined by the parameter ACCURACY that contains

the root of the equation. This algorithm assumes that the function f(x) is provided

by the user as a C function of the form

double foo(double x);

4.1. THE BISECTION METHOD 4-5

Figure 4.2: The function f(x) = xex
− 1 plotted against the variable x. A quick glance reveals

that the equation f(x) = 0 has a unique solution in the interval [−1, 1].

Finding the initial interval in which a unique solution to an equation lies is more Guessing the
Initial Intervalof a guess than an algorithm. In most cases, calculating the limiting values of the

function at ±∞ or examining the graph of the function gives the best handle on

bracketing its solutions. These two techniques are illustrated with the following

example.

Example: Solving the equation xe
x−1 = 0 with the bisection method

In order to study whether this equation has roots, we will first check the limits

of the function f(x) = xex − 1 as x → ±∞. Calculating one of the limits is simple,

because

lim
x→∞

(xex − 1) = +∞ . (4.12)

Calculating the limiting value of the function as x → −∞, however, requires the

use of L’Hospital’s rule

lim
x→−∞

(xex − 1) = lim
x→−∞

(xex) − 1 = lim
x→−∞

(
x

e−x
) − 1 = −1 . (4.13)

Because the two limits have opposite signs and the function is continuous, the

equation has at least one solution for some real value of the variable x.

If the function is monotonic and has two limits of opposing signs, then it has

at most one solution. We study the monotonicity of the function by evaluating its

derivative
df

dx
= (x + 1)ex . (4.14)

This is positive when x > −1 and negative when x < −1. At x = −1, the function

takes the value f(−1) ≃ −1.368, which is negative. As a result, between x = −∞

and x = −1 the function is negative and decreasing, it has a minimum at x = −1,

and between x = −1 and x = +∞ the function is increasing and changes sign.

Therefore, the equation has only one solution in the interval [−1, +∞).

In order to obtain a finite upper bound on the interval in which the solution

exists, we recognize the fact that if x > 1,

f(x) = xex − 1 > 1 · e1 − 1 > 1 . (4.15)

4-6 CHAPTER 4. ROOTS OF ALGEBRAIC EQUATIONS

The function, therefore, changes sign in the interval [−1, 1] in which the single root

of the equation lies.

Alternatively, we can guess an initial interval for the bisection algorithm by

plotting the function and studying graphically its behavior. A quick glance at the

figure shows that the equation has only one solution, which lies in the interval

[−1, 1], as we inferred earlier using analytical methods.

Inserting this interval as an initial guess in a bisection function allows us to find

the solution to the equation as x0 = 0.567143 with an accuracy of 1 × 10−6.

The bisection method is a very robust and simple to implement algorithm forAssessment of the
Bisection Method finding the root of an equation. It guarantees finding the solution at the required

accuracy, within a finite number of steps. The method, however, has a number of

disadvantages:

(i) It cannot find the solutions to all equations. For example, a polynomial that has

a root of multiplicity 2 does not change sign across the solution. More specifically,

the equation

(x − 2)2 = 0 (4.16)

cannot be solved with the bisection method because the function f(x) = (x − 2)2

is positive or zero for all real values of x. The same is also true for many equations

that are not polynomials of x. For example, the equation

ex − x − 1 = 0 (4.17)

has an obvious root at x = 0, even though the function f(x) = ex − x − 1 is never

negative.

(ii) It requires an a priori knowledge of an interval in which a unique solution exists.

This not necessarily a disadvantage of the method, because it forces us to study

thoroughly the equation before we solve it and, hence, protects us from making

mistakes. It is worth asking, however, which root does the bisection method find

when there are more than one roots in the initial interval. The answer, of course,

depends on the particular equation and the choice of initial interval. One can answer

this question probabilistically, however, considering a large number of application

of the method to various equations with various initial intervals[1]. The result is

fascinating!

Consider an equation f(x) = 0 that has N simple roots in the interval [a, b],

which we will denote by x1 < x2 < ... < xN . The bisection algorithm will find the

odd numbered roots (x1, x3, etc.) with equal probability and the even numbered

roots (x2, x4, etc.) with zero probability. It is fair to say that these are not good

chances to play with!

(iii) It converges slowly. Although the uncertainty in the solution is reduced by a

factor of two after each iteration, the bisection method is the slowest among the

root finding algorithms that we discuss in this chapter. Before embarking into a

more detailed study of this issue, however, we need to discuss in general the order

of convergence of an iterative method.

4.2 Order of Convergence of an Iterative Method

When we employ an iterative method to solve a problem, we start with an initial

guess of the solution and improve it systematically with each cycle of the algorithm.

4.3. THE NEWTON-RAPHSON METHOD 4-7

Our aims is to reach a given accuracy for the solution with the smallest number of

cycles. We often measure the efficiency of an iterative method to achieve this by

calculating its order of convergence.

For concreteness, we will consider an iterative method that aims to find the

root of an algebraic equation x0 and denote by xi, the approximate solution after

i iterations. We will also use the symbol ǫi to denote the fractional error between

the approximate and the correct solution after i iterations. If a constant number λ

exists such that

lim
i→∞

|xi+1 − x0|

|xi − x0|N
= λ (4.18)

then we say that our iterative method converged with an order N and an asymptotic

error constant λ. If N = 1, we call the convergence linear. If N = 2, we call the

convergence quadratic.

The higher the order of convergence of an iterative method, the faster the so-

lution converges to a required accuracy. Indeed, after the first few iterations, the

definition (4.18) implies that the error in the solution achieved by a method with

order of convergence N is

ǫi+1 ≃ λǫN
i . (4.19)

We can use this definition to calculate the order of convergence of the bisection

method. We will denote by ∆ ≡ b − a the size of the initial interval in which the

single root exists. This is also an estimate of the uncertainty ǫ0 with which we know

the solution a priori . After one iteration, the interval and hence the uncertainty

is reduced to half, i.e., ǫ1 = ∆/2. After two iterations, it is reduced by one more

factor of two, i.e., ǫ2 = (∆/2)/2 = ∆/22, and so on. In general,

ǫi+1 =
1

2
ǫi (4.20)

and, therefore, the bisection method converges linearly with an asymptotic error

constant of 0.5.

We can use the linear order of converge of the bisection method to calculate how

many iterations we will need to complete in order to reach an uncertainty δ in the

final estimate of the solution. It is easy to show by induction that after i iterations

the uncertainty is ǫi = ∆/2i. Setting this to δ and solving for i we obtain

i =
log10 ∆ − log10 δ

log10 2
. (4.21)

We can, therefore, reduce the uncertainty with which we know the solution to an

algebraic equation by six orders magnitude by using the bisection method for 20

iterations.

4.3 The Newton-Raphson Method

The Newton-Raphson method is an iterative algorithm for solving algebraic equa-

tions of the form f(x) = 0. It overcomes two disadvantages of the bisection method.

It does not require knowledge of an interval in which a unique solution lies and it

converges quadratically. However, it does not guarantee convergence to a solution

and requires an analytic knowledge of the first derivative of the function f(x).

In order to introduce this method, we will consider a function f(x) that is

continuous and such that the equation f(x) = 0 has a root at x = x0. We will also

assume that we have made an initial guess for the value of the root, which we will

4-8 CHAPTER 4. ROOTS OF ALGEBRAIC EQUATIONS

The Development of the Newton-Raphson Method[2]

Sir Isaac Newton, the famous English scientist of the 17th
century, used in his notes a method introduced by the French
mathematician François Viète (1540–1603) in order to solve
polynomial equations of order higher than four. He then fol-
lowed a similar approach in his famous book Philosophiae Nat-
uralis Principia Mathematica to solve the non-linear equation

x − e sin(x) = M

that connects the eccentric anomaly x to the mean anomaly
M of a planet in an orbit of eccentricity e.
In 1690, the English mathematician Joseph Raphson (approx-
imately 1648–1715) published a similar method to solve poly-
nomial equations of order up to ten, with some references
to Newton’s work. Neither Newton nor Raphson used the
newly invented techniques of calculus to derive the method.
Instead, they used algebraic and geometric arguments. Half a
century later, Thomas Simpson (1710–1761) presented a sim-
ilar method for solving non-linear equations based on argu-
ments of calculus. The familiar Newton-Raphson method was
published in 1798 by the French mathematician Joseph Louis
Lagrange (1736–1813) with reference to the work by Newton
and Raphson but not to the work by Simpson.

Isaac Newton
(1643–1727)

denote by xi, which is different from the true solution by an amount δ = x0 − xi.

Using this information, the Newton-Raphson method allows us to improve our initial

guess by calculating approximately the value of δ.

In order to estimate δ, we Taylor expand the function f(x) from xi to the true

solution x0 = xi + δ. We obtain

f(x0) = f(xi + δ) = f(xi) + f ′(xi)δ +
1

2
f ′′(xi)δ

2 + ... , (4.22)

where primes denote derivatives of the function with respect to the variable x. By

definition, f(x0) = 0 and hence we can solve the above equation for δ. Neglecting

terms of order δ2 or higher we obtain

δ = −
f(xi)

f ′(xi)
. (4.23)

This is the amount we need to add to our guess in order to approach the true

solution. Because we have neglected terms of second and higher order in the Taylor

expansion, however, we most probably did not reach the solution. We, therefore,

need to repeat these steps until we have converged to an acceptable solution.

We will consider the solution converged if two separate criteria are satisfied.

First, the correction introduced to the solution by the last iteration should be

smaller than a required accuracy. Second, the value of the function at the current

value of the solution should be zero, to within a required accuracy.

Figure 4.3 illustrates graphically the Newton-Raphson algorithm. In this exam-

ple, x1 is our first guess for the root of the equation f(x) = 0. When we approximate

the function around x1 with the Taylor expansion (4.22) while keeping only terms

up to first order, we are effectively replacing the function f(x) with the straight

line A1B1 that is tangent at f(x1). We then find the abscissa x2 of the point at

which the straight line A1B1 crosses the x−axis by evaluating the correction δ in

4.3. THE NEWTON-RAPHSON METHOD 4-9

Figure 4.3: A graphical representation of the Newton-Raphson algorithm for finding the root of
an algebraic equation.

equation (4.23). We repeat this procedure by approximating the function around

x2 with the tangent line A2B2, find the point x3 at which this tangent line crosses

the x−axis, and continue until we have reached the true solution with the required

accuracy. It is often said that following the Newton-Raphson method is equivalent

to sliding down the function along tangent lines until we find the solution.

We can summarize the steps needed to find the root of an equation with the

Newton-Raphson method as follows:

1. We start with an initial guess to the root, xi

2. We update our guess setting xi + δ → xi where the correction δ is given by

expression (4.23).

3. If δ is smaller than the required accuracy and f(xi) = 0 to within the required

accuracy then we we have reached the solution. Otherwise, we go back to step

#2.

There is a particular issue that we need to be careful about when calculating

the correction δ using equation (4.23). If the current estimate of the solution, xi, is

at or near an extremum or an inflection point of the function f(x), then the value

of the derivative f ′(x) becomes very small and, therefore, the correction δ becomes

very large. Graphically, the tangent to the function becomes nearly horizontal and

sends the next estimate of the root towards +∞ or −∞. There is no good, general

way of recovering from such an unfortunate step. The best course of action is to

use a different initial guess for the solution.

A C function that implements the Newton-Raphson method as discussed here

is shown above. This function requires one arguments, the initial guess for the

solution. Upon completion, it returns the root to the equation. This algorithm

assumes that the function f(x) and its derivative f ′(x) are provided by the user as

C functions of the form

double foo(double x);

and

double fooprime(double x);

If the solution to an equation has multiplicity one, then the Newton-Raphson Order of
Convergence

4-10 CHAPTER 4. ROOTS OF ALGEBRAIC EQUATIONS

double foo(double x); // prototypes for functions

double fooprime(double x);

double newtonraphson(double root)

/* Uses the Newton-Raphson method to find the solution to an

algebraic equation of the form f(x)=0. The function f(x) and its

derivative are provided by the functions foo(x) and fooprime(x)

and are supplied by the user. The parameter ACCURACY is used in

determining whether the method has converged to a solution. Upon

completion, it returns the root of the equation.

*/

#define ACCURACY 1.0e-6

{

double delta; // Newton-Raphson correction

double fx,fprime; // f(x) and its derivative

fx=foo(root); // f(x) at x=root

do

{

fprime=fooprime(root); // f’(x) at x=root

if (fabs(fprime)>ACCURACY) // if not extremum/inflection

delta=-fx/fprime; // calculate correction

else // otherwise

{ // print error message and exit

printf("Newton-Raphson cannot converge\n");

return 0.0;

}

root+=delta; // update root

fx=foo(root); // f(x) at root

} // until converged

while (fabs(delta)>ACCURACY || fabs(fx)>ACCURACY);

return root;

}

method converges quadratically. In order to show this, we will consider two suc-

cessive approximations xi and xi+1 evaluated after the i-th iteration and the one

following it. These two trials are related by equation (4.23) or

xi+1 − xi = −
f(xi)

f ′(xi)
. (4.24)

If we denote by ǫi ≡ xi − x0 and ǫi+1 ≡ xi+1 − x0 the deviations of the two

approximations from the true solution x0, then

ǫi+1 = ǫi −
f(xi)

f ′(xi)
. (4.25)

We now Taylor expand the function f(x) around the true solution x0 to obtain

f(x) = f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2 + ...

= f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2 + ... , (4.26)

where we have used the fact that f(x0) = 0. We then take the derivative of the

expanded function with respect to the variable x and evaluate it at xi to obtain

f ′(xi) = f ′(x0) + f ′′(x0)(xi − x0) + ... (4.27)

4.3. THE NEWTON-RAPHSON METHOD 4-11

Inserting equations (4.26) and (4.27) into equation (4.25) we obtain

ǫi+1 = ǫi −
f ′(x0)ǫi + 1

2f ′′(x0)ǫ
2
i

f ′(x0)[1 + f ′′(x0)ǫi

f ′(x0)
]

. (4.28)

Note that this last equation is value only if f ′(x0) 6= 0, which is the reason why we

required the multiplicity of the solution to be one.

We now expand the denominator in the fraction using the approximate relation

(1 + x)a ≃ 1 + ax + ... (4.29)

that is valid when x ≪ 1, rearrangement some terms keeping only those that are

up to second order in the small parameter ǫi and arrive at the final result

ǫi+1 = ǫ2i

[

f ′′(x0)

2f ′(x0)

]

. (4.30)

This last relation proves that the Newton-Raphson method converges quadratically

to a solution of multiplicity one of an algebraic equation. This is, of course, true as

long as the initial guess is not significantly different than the true solution.

If the multiplicity of the root is equal to m > 1, then it can be shown that the

Newton-Raphson method converges only linearly with an asymptotic error constant

of

l =
1

1 − m
. (4.31)

In general, the Newton-Raphson method is an algorithm that converges fast Assessment of the
Newton-Raphson
method

to the solution of an equation starting from a simple initial guess. It also does

not require an a priori knowledge of an interval in which the solution exists. This

method, however, also has a number of disadvantages.

(i) It requires an analytic knowledge of the derivative f ′(x). In many situations

this may not be possible, if the function f(x) itself is the result of a numerical

calculation. In other cases, calculating the derivative may be computationally so

expensive that it counters the gain in speed achieved by the quadratic convergence

of the method.

(ii) It does not converge globally. Indeed, our proof of quadratic convergence

relies on two assumptions. That the current guess to the solution is not very differ-

ence from the true value and that the derivative of the function f ′(x) at the guess is

not zero. If either of these conditions is not satisfied, the method may not converge

at all to the true solution.

(iii) In very symmetric situations, it enters a cyclic behavior without converging

to a solution.

Further Reading

1. Which root does the bisection algorithm find? Corliss, G., SIAM Review 19, 2,

325 (1977)

2. Historical Development of the Newton-Raphson Method , Ypma, T. J., SIAM Re-

view 37, 4, 531 (1995)

