
Chapter 6

Integration of Functions

In this chapter we will

• introduce the concept of digitization

• learn how to evaluate definite integrals using the

– Rectangle rule

– Trapezoid rule

– Newton-Cotes formulae

– Gaussian quadratures

• identify Runge’s phenomenon of interpolation

• devise techniques to handle improper integrals

In this chapter, we will study numerical methods that allow us to evaluate the

definite integrals of real functions. Such integrals appear in many physical problems

and are invariably related to the calculation of a path length, a surface area, or a

volume with different weight functions. The numerical evaluation of a definite

integral is often called numerical integration or numerical quadrature.

Because of their key place in calculations of physical quantities, numerical meth-

ods for the evaluation of definite integrals were developed in the very early days

of calculus by scientists such as Newton, Euler, and Gauss. Even today, most of

the methods used are based on these early works that build on the geometric inter-

pretation of an integral as the area between a curve and the x−axis or the volume

enclosed within a closed surface.

In order to study the different methods of numerical integration, however, we

will need first to digress slightly and discuss the procedure that makes it possible

to perform on a digital computer calculations that involve continuous functions of

real numbers.

6.1 Discretization

In our discussion of numerical methods, so far, we focused on problems that have

discrete solutions. For example, the frequencies of the normal modes of N coupled
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Squaring the Circle

The term “quadrature” arises from the ancient problem of finding the quadra-
ture of a circle, or squaring the circle, as is most commonly known. This problem
was posed in various different forms from the Babylonian times, but in ancient
Greece it referred to the construction of a square that has the same area as that
of a circle, using only a compass and a straightedge. The impossibility of such a
construction was proven in 1882, when it was shown that π is a transcendental
number. However, as late as 1897, a bill was submitted to the House of Rep-
resentatives of the state of Indiana, aiming to legislate the value of π to the
rational number 16/5 = 3.2, thus proving that a circle can be squared![1]

harmonic oscillators comprise a set of N real or imaginary numbers. In many

physical problems, however, the solution is a continuous function. For example, in

order to model the trajectory of a projectile fired from a cannon in the atmosphere,

we need to describe the position of the particle as a function of time. In other

cases, although the solution to the problem is a single real number, the procedure

might involve the manipulation of continuous functions. In the previous example,

if we want to calculate the total distance traveled by the projectile, we will need to

integrate the continuous function that describes its trajectory.

Digital computers are not designed to handle continuous functions. As we have

seen many times so far, even the representation of a single real number with floating

point arithmetic involves several approximations and requires special care. The

potential for pitfalls only becomes greater when dealing with continuous functions.

The fundamental approach with which we manipulate a function f(x) with a digital

computer is by tabulating its value over a range of discrete values of the argument

x. This is called discretization.

Consider, for example, a projectile that is shot from a cannot at an angle θ =

45 degrees with respect to the surface of the Earth and with an initial speed of

u0 = 100 m s−1. If we assume that the gravitational field of the Earth is constant

with an acceleration equal to g = 10 m s−2 and that there is no air resistance, then

the horizontal and vertical displacements of the projectile as a function of time are

given by the functions

x(t) = u0 cos(θ)t = 50

(

t

1 s

)

m (6.1)

and

z(t) = u0 sin(θ)t −
1

2
gt2 =

[

50

(

t

1 s

)

− 5

(

t

1 s

)2
]

m , (6.2)

respectively. The projectile will return back to the surface of the Earth after a time

t0 =
2u0 sin θ

g
= 10 s (6.3)

and at a distance

xmax =
u2

0 sin(2θ)

g
= 500 m (6.4)

from the cannon. In its trajectory, the projectile will reach a height of

zmax =
u2

0 sin2(θ)

2g
= 125 m . (6.5)

In order to perform any calculation with the functions x(t) and z(t), we will

need to discretize them by tabulating their values over a discrete grid of times,
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Figure 6.1: Two examples of discretizing the path of a projectile as a series of (left) steps or
(right) line elements between the grid points.

e.g.,
i ti (s) xi (m) zi (m)
1 1 50 45
2 1.5 75 63.75
... ... ... ...
20 10 500 0

The index i counts the number of grid points.

It is important to emphasize here that by discretizing a continuous function, we

loose all information about the behavior of the function between the grid points. As

a result, the accuracy of performing calculations with discretized functions depends

on the spacing between the neighboring grid points. In this example, we used a

constant spacing of 0.5 s. This is not neccesary, as we could have used variable

spacing as well. Our goal in discretizing a continuous function is to place enough

grid points where the function changes rapidly and not as many where the function

remains flat.

We can now use the discretized values of x(t) and z(t) in order to perform nu-

merical calculations. We need to be very careful, however, and show explicitly that

the calculation that we will perform with the discrete values gives the same answer

as the calculation with the continuous functions when the number of discretiza-

tion points goes to infinity. The following, rather obvious, example illustrates the

potential problems.

Consider again the motion of the projectile discussed above and let us use the

discretized values to calculate the total path length traveled by the projectile until

it returned to the surface of the Earth. We will visualize the motion of the projectile

in the x − z plane, as shown in Figure 6.1.

One way to calculate the total path is by visualizing a staircase connecting the

discrete pairs of points in the x − z plane. This is how a computer monitor would

pixelize the curve. The total path length would then be the sum of the displacements

along the x− and the z− axes of each step. (Imagine calculating the path traveled

by an ant that climbs up and down the staircase.) In algebraic form, this means

that we are trying to calculate the total path S by the sum

S =
N−1
∑

i=1

(|xi+1 − xi| + |zi+1 − zi|) . (6.6)
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In this expression, N is the total number of grid points. The sum, however, ends

at N − 1 because there are only N − 1 “steps” in the “staircase”.

When we consider the limit of an infinite number of grid points, the discretized

“staircase” becomes visually indistinguishable from the continuous curve. The same

is not true, however, for the sum given by expression (6.6). Indeed, projecting the

individual steps on the x− and the z−axis, we can see that the total sum is

S = xmax + 2zmax (6.7)

independent of the number of grid points!

The correct way to calculate the total path traveled by the projectile is to connect

the discrete pairs of points in the x − z plane by straight line elements and sum

their lengths. Algebraically, this means that we will calculate the total path using

the expression

S =
N−1
∑

i=1

[

(xi+1 − xi)
2 + (zi+1 − zi)

2
]1/2

. (6.8)

In order to show that this expression gives the correct answer when we use an

infinite number of grid points, we first rewrite it as

S =
N−1
∑

i=1

[

1 +

(

zi+1 − zi

xi+1 − xi

)2
]1/2

(xi+1 − xi) . (6.9)

In this last expression we made explicit use of the fact that xi+1 − xi > 0 in the

problem we are studying.

We now set h ≡ xi+i − xi and will use the definitions of the derivative of a

function z(x),
dz

dx
= lim

h→0

z(x + h) − z(h)

h
, (6.10)

and of the definite integral of a function f(x),

∫ b

a

f(x)dx = lim
h→∞

∑

i

f(a + ih)h . (6.11)

Taking the limit of an infinite number of grid points is equivalent to taking the limit

of the grid separation becoming zero, h → 0, and therefore

lim
N→∞

S = lim
h→0

S =

∫ xmax

0

[

1 +

(

dz

dx

)2
]1/2

dx . (6.12)

This last integral is nothing but the path length of the trajectory as calculated

with the continuous functions x(t) and z(t). It is worth emphasizing here that an

apparently small change between expressions (6.6) and (6.8) made the difference

between a numerical method that works and one that does not!

6.2 Integration of Functions

The definite integral of a function f(x)

I =

∫ b

a

f(x)dx (6.13)

is equal to the surface area of the shape enclosed by the curve that represents the

function, the x-axis, and the vertical lines at x = a and x = b.
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In order to evaluate this integral, we first need to discretize the function over

a series of N grid points x1, x2, ..., xi, ..., xN , such that x1 = a and xN = b. If we

choose the spacing h between two successive grid points to be constant, then it must

be equal to

h =
b − a

N − 1
, (6.14)

where the denominator N−1 reflects the fact that there are N−1 intervals between

N grid points. In this case, the i−th grid point can be found at an abscissa

xi = a + (i − 1)h . (6.15)

With these definitions, the integral of the function over the entire interval be-

comes equal to the sum of the N − 1 integrals between successive grid points, i.e.,

I =
N−1
∑

i=1

∫ xi+1

xi

f(x)dx . (6.16)

Our task, therefore, reduces to devising a numerical method to calculate approxi-

mately the integral between two succesive grid points.

6.2.1 The Rectangle Rule

If we choose the grid points such as their separation is very small, then the function

f(x) is expected to change only marginally in the interval [xi, xi+1]. As a result,

we may approximate it to be constant and equal to its value at some point within

the interval. For example, we may assume the function to be equal to its value at

the leftmost point of the interval, i.e., we may set f(x) = f(xi) so that the integral

between two grid points becomes

∫ xi+1

xi

f(x)dx = f(xi)(xi+1 − x1) (6.17)

and the integral over the entire interval becomes

I =

∫ b

a

f(x)dx =

N−1
∑

i=1

f(xi)(xi+1 − x1) . (6.18) Rectangle
Rule

A C function that implements the rectangle rule for a constant separation be-

tween grid points is shown in the following page. The algorithm requires three

arguments, the lower and upper limit of integration as well as the number of grid

points used. Upon completion, it returns the numerical value of the definite inte-

gral. This algorithm assumes that the integrand f(x) is provided by the user as a

C function of the form

double foo(double x);

Note that, in this algorithm, we have used the integer counter icounter to step Programming
Tipthrough the various grid points and evaluate the sum of the rectangle rule. Mathe-

matically speaking, the for statement that we used in the algorithm is equivalent

to the statement

for(xgrid=xlower;xgrid<xupper;xgrid+=step)

This last statement appears to be more efficient than the one we used because it

uses one less variable and removes the need for the statement

xgrid+=step; // Go to next grid point
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Figure 6.2: In the rectangle rule, the area between the curve f(x) and the x−axis is approximated
by a sum of rectangles between successive grid points.

within the body of the loop. However, it does not guarantee that the loop will ter-

minate before the variable xgrid becomes approximately equal to xupper, because

of rounding errors, as we discussed in Chapter 2.

Figure 6.2 shows that the approximation for the integral we devised is equivalentGraphical
Representation to replacing the surface area between the function f(x) and the x−axis with a series

of rectangles between successive grid points. Note here that we chose to approximate

the function by its value at the leftmost point in each interval. We could have equally

well used the rightmost or the middle point of each interval, without changing the

level of approximation of the method.

It is important to discuss the fact that the rectangle method approximates the

curve f(x) as a “staircase” in a manner that is practically indistinguishable from the

discretization shown in the left pannel of figure 6.1. As we discussed in the previous

section, this discretization failed to provide us with an accurate measurement of

the length of the curve, independent of the number of grid points used. As we will

show below, however, this same discretization method allows us to evaluate the area

under the curve with an error that diminishes as the number of grid points goes to

infinity.

Our aim here is to evaluate the error of approximating the integral of a functionError of
Approximation with the rectangle rule, that is calculate the quantity

ǫ ≡

∫ b

a

f(x)dx −

N−1
∑

i=1

f(xi)(xi+1 − xi) . (6.19)

We begin by Taylor expanding the function around xi,

f(x) = f(xi) + f ′(ξ)(x − xi) (6.20)

where xi ≤ ξ ≤ xi+1. We then integrate both sides of this equation from xi to xi+1,

∫ xi+1

xi

f(x)dx = f(xi)(xi+1 − xi) +
1

2
(xi+1 − xi)

2f ′(ξ) . (6.21)

The first term in the above sum is equal to the approximate value of the integral

using the rectangle method. The second term in the sum is, therefore, the error

in the approximation. Assuming for simplicity that the spacing between any two
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double foo(double x); // prototype for integrand

double rectangle(double xlower, double xupper, int Ngrids)

/* Uses the rectangle rule to calculate the definite

integral of a function in the interval [xlower,xupper].

The rectangle rule is applied on a grid of Ngrids

values of the abscissa with a constant separation. The

form of the integrand is provided by the function

foo(x) and is supplied by the user.

*/

{

double integral=0.0; // the value of the integral

int icounter; // Counter for grid points

double xgrid; // Abscissa of grid point

double step; // Separation between grid points

step=(xupper-xlower)/(Ngrids-1);

xgrid=xlower; // First grid point

// for all but last grid point

for (icounter=1;icounter<Ngrids;icounter++)

{

integral+=foo(xgrid)*step;// Add the rectangle area

xgrid+=step; // Go to next grid point

}

return integral;

}

successive grid points is constant and equal to h, we can write the error introduced

in calculating the integral between these two points as

ǫi =
1

2
f ′(ξ)h2 . (6.22)

We now need to take into account the fact that the rectangle method involves taking

the sum of N − 1 such intervals, and therefore the error of approximation can be as

large as

ǫ ≃ (N − 1)
1

2
〈f ′(ξ)〉h2 ≃

b − a

2
〈f ′(ξ)〉h . (6.23)

In this last expression, we used the fact that N − 1 = (b− a)/h (see equation (6.14)

and the symbol 〈f ′(ξ)〉 to denote an appropriate average of the first derivative of

the function f(x) in the entire interval.

This last expression shows that decreasing the spacing between successive grid

points by a factor of two reduces the error of the rectangle method by the same

amount. The approximation, therefore, converges linearly to the true value of the

integral, as the number of grid points becomes infinite.

6.2.2 The Trapezoid Rule

We can obtain a higher level of approximation in the evaluation of the integral by

assuming that the function f(x) varies linearly between any two successive grid

points xi and xi+1. This is equivallent to assuming that, for xi ≤ x ≤ xi+1,

f(x) ≃ f(xi) +
f(xi+1) − f(xi)

xi+1 − xi
(x − xi) . (6.24)
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Figure 6.3: In the trapezoid rule, the area between the curve f(x) and the x−axis is approximated
by a sum of trapezoids between successive grid points.

A quick inspection of this last relation, which is linear in x, shows that it indeed

gives the correct values of the function f(x) at the two limits of the interval, xi and

xi+1.

Integrating the above approximate relation between the two successive grid

points, we obtain

∫ xi+1

xi

f(x)dx ≃
1

2
[f(xi+1) + f(xi)] (xi+1 − xi) . (6.25)

As a result, our approximation for the integral over the entire interval becomes

I =

∫ b

a

f(x)dx =

N−1
∑

i=1

1

2
[f(xi) + f(xi+1)](xi+1 − xi) . (6.26)Trapezoid

Rule

A C function that implements the trapezoid rule is shown in the following page.

As in the case of the algorithm for the rectangle rule, it requires three arguments,

the upper and lower limit of integration as well as the number of grid points used.

Note that we did not use the summation (6.26) in the implementation of our al-

gorithm, because, albeit transparent, it is not optimal in evaluating the trapezoid

rule. Indeed, the value of the function at each interior grid point xi is calculated

twice during the summation, once for the (i−1)-th term and once for the i-th term.

We can avoid duplicating this effort by regrouping the terms in the summation as

I =

N−1
∑

i=1

1

2
[f(xi) + f(xi+1)](xi+1 − xi) +

=
1

2
f(x1)(x2 − x1) +

1

2
f(x2)(x2 − x1) +

1

2
f(x2)(x3 − x2) +

1

2
f(x3)(x3 − x2) + ... +

1

2
f(xN−1)(xN − xN−1) +

1

2
f(xN )(xN − xN−1)

=
1

2
f(x1)(x2 − x1) +

1

2

N−1
∑

i=2

f(xi)(xi+1 − xi−1) +

1

2
f(xN )(xN − xN−1) . (6.27)
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double foo(double x); // prototype for integrand

double trapezoid(double xlower, double xupper, int Ngrids)

/* Uses the trapezoid rule to calculate the definite

integral of a function in the interval [xlower,xupper].

The trapezoid rule is applied on a grid of Ngrids

values of the abscissa with a constant separation. The

form of the integrand is provided by the function

foo(x) and is supplied by the user.

*/

{

double integral=0.0; // the value of the integral

int icounter; // Counter for grid points

double xgrid; // Abscissa of grid point

double step; // Separation between grid points

step=(xupper-xlower)/(Ngrids-1);

xgrid=xlower; // First grid point

integral=foo(xgrid)*0.5*step;

for (icounter=1;icounter<Ngrids-1;icounter++)

{

integral+=foo(xgrid)*step; // Apply trapezoid rule

xgrid+=step; // Go to next grid point

}

integral+=foo(xlower)*0.5*step; // Last grid point

return integral;

}

When the separation between two consecutive grid points is constant and equal to

h, then the trapezoid rule becomes

I =
1

2
f(x1)h +

N−1
∑

i=2

f(xi)h +
1

2
f(xN )h . (6.28)

Note that when f(x1) = −f(xN ) and the distance between two successive grid

points is constant, the trapezoid and rectangle rules become identical!

Figure 6.3 shows that the approximation to the total integral given by equa- Graphical
Representationtion (6.26) is equivalent to replacing the surface area between the function f(x) and

the x−axis with a series of trapezoids between successive grid points. Comparing

this to Figure 6.2, it appears, at least graphically, that the trapezoid rule provides a

better approximation to the continuous integral compared to the rectangle rule. We

will indeed show below that the trapezoid rule converges at most quadratically to

the true value of the integral.

Our aim is to evaluate the quantity Error of
Approximation

ǫ ≡

∫ b

a

f(x)dx −

N−1
∑

i=1

1

2
[f(xi) + f(xi+1)](xi+1 − xi) , (6.29)

which measures the error between the true value of the integral and the one we

calculate with the trapezoid rule. We begin again by Taylor expanding the function

f(x) around xi, but we keep now terms up to second order in (xi+1 − xi),

f(x) = f(xi) + f ′(xi)(x − xi) +
1

2
f ′′(ξ)(x − xi)

2 , (6.30)
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where xi ≤ ξ ≤ xi+1. We then integrate both sides of this equation from xi to xi+1

to obtain
∫ xi+1

xi

f(x)dx = f(xi)(xi+1−xi)+
1

2
(xi+1−xi)

2f ′(xi)+
1

3!
(xi+1−xi)

3f ′′(ξ) . (6.31)

We continue by Taylor expanding again the function f(x) but this time around

xi+1 as

f(x) = f(xi+1) + f ′(xi+1)(x − xi+1) +
1

2
f ′′(ξ′)(x − xi+1)

2 , (6.32)

where again xi ≤ ξ′ ≤ xi+1. We then integrate both sides of this equation from xi

to xi+1 to obtain

∫ xi+1

xi

f(x)dx = f(xi+1)(xi+1 −xi)−
1

2
(xi+1 −xi)

2f ′(xi+1)+
1

3!
(xi+1 −xi)

3f ′′(ξ′) .

(6.33)

If we now average equations (6.31) and (6.33), we obtain

∫ xi+1

xi

f(x)dx =
1

2
[f(xi) + f(xi+1)](xi+1 − xi) −

1

4
(xi+1 − xi)

2 [f ′(xi+1) − f ′(xi)] +

1

12
(xi+1 − xi)

3 [f ′′(ξ) + f ′′(ξ′)] . (6.34)

The second term in the sum appearing in the right-hand side of the last equation

is actually a term of third order in the small difference (xi+1 − xi). In order to see

this, we can differentiate both sides of equation (6.30) and evaluate it at x = xi+1,

i.e.,

f ′(xi+1) = f ′(xi) + f ′′(ξ)(xi+1 − xi) . (6.35)

We the insert this expression into equation (6.34) to obtain

∫ xi+1

xi

f(x)dx =
1

2
[f(xi) + f(xi+1)](xi+1 − xi) −

1

12
(xi+1 − xi)

3 [4f ′′(ξ) + f ′′(ξ′)] . (6.36)

Assuming for simplicity that the spacing between any two successive grid points

is constant and equal to h, we can write the error introduced in calculating the

integral between these two points as

ǫi =
1

12
[4f ′′(ξ) + f ′′] h3 . (6.37)

Taking into account the fact that the trapezoid method involves taking the sum of

N − 1 such intervals, the error of approximation can be as large as

ǫ ≃ (N − 1)
5

12
〈f ′′(ξ)〉h3 ≃

5(b − a)

12
〈f ′′(ξ)〉h2 . (6.38)

In this last expression, we used the fact that N − 1 = (b− a)/h (see equation (6.14)

and the symbol 〈f ′′(ξ)〉 to denote an appropriate average of the second derivative of

the function f(x) in the entire interval. Decreasing the spacing between successive

grid points by a factor of two reduces the error of the trapezoid rule by a factor

of four. The approximation, therefore, converges quadratically to the true value of

the integral, as the number of grid points becomes infinite.


