
Chapter 7

Ordinary Differential

Equations

In this chapter we will

• explore the difference between explicit and implicit numerical methods

• study the stability of numerical integrators

• learn how to solve algebraic equations using

– Euler’s method

– Runge-Kutta methods

An equation that involves derivatives of the dependent variable is called a differ-

ential equation. Most problems in the physical sciences involve the solution of

differential equations. In fact, the calculus of differential equations was invented by

Newton and Leibnitz in order to describe the evolution of physical systems.

If a differential equation involves only one independent variable and, there-

fore, contains only full derivatives, it is called an ordinary differential equation

(ODE) . If it involves more than one independent variables and, therefore, contains

partial derivatives, it is a called a partial differential equation (PDE). The or-

der of a differential equation is the order of the highest derivative that appears in

the equation.

There are many well known differential equations in Physics. For example,

Newton’s second law
d2~r

dt2
=

1

m
~F (~r) , (7.1)

which connects the acceleration d2~r/dt2 of a particle of mass m and the force
~F (~r), is a second-order, ordinary differential equation. On the other hand, the

one-dimensional Schrödinger’s equation

−ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m

∂2Ψ(x, t)

∂χ2
+ V (x)Ψ(x, t) , (7.2)

which describes the time evolution of a wavefunction Ψ(x, t) of a particle in a

potential V (x), is a second-order partial differential equation. In this chapter, we

will discuss methods for solving ordinary differential equations.
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A differential equation of order N is typically equivalent to a system of N equa-

tions of first order. For example, we can rewrite Newton’s second law (equation [7.1])

as the system of two first-order equations

d~r

dt
= ~v

d~v

dt
=

1

m
~F (~r) , (7.3)

by introducing the particle velocity ~v as an additional dependent variable. Because

of such decompositions, we will develop here algorithms that solve a system of N ,

first-order, ordinary differential equations.

The solution to a differential equation depends not only on the equation itself,

but on the boundary conditions as well. In fact, it is the boundary conditions that

pick one, many, or even none of all the possible solutions to a differential equation.

Furthermore, the number, location, and character of the boundary conditions affect

considerably the choice of numerical method used. In a typical problem, for each

differential equation of order N , there are N boundary conditions required, each of

which has to be of order at most N − 1. In a so-called initial value problem, all

boundary conditions are given at the same place in the domain of solution, i.e., for

the same value of the independent parameter. In a boundary-value problem,

different boundary conditions are given at different places in the domain of solution.

As an example, Newton’s second law (equation [7.1]) is a second-order differen-

tial equation. It, therefore, requires two boundary conditions. Each of the boundary

conditions can be at most of order one, i.e., it can be either a position or a velocity

at a given time. In an initial-value problem, for example, the position and velocity

of a particle are given at time t0 and then the differential equation is solved forward

in time. In a boundary value problem, the initial and final position of a particle may

be given. In physical situations, initial value problems almost always have unique

solutions. On the other hand, boundary value problems may have none, one, or

even many solutions. In this chapter, we will discuss only methods for solving a

system of first order, ordinary differential equations for initial-value problems.

7.1 Explicit and Implicit Methods

Solving ordinary differential equations is conceptually identical to integrating a

function. In fact, for an equation of the form

df

dt
= g(t) , (7.4)

in which the right-hand side depends only on the independent variable and not on

the function itself, the solution is simply

f(t) = f(t0) +

∫ t

t0

g(t)dt , (7.5)

where f(t0) is the boundary condition. In general, however, the right-hand side

of a differential equation will depend on both the dependent and the independent

variables, i.e.,
df

dt
= g[t, f(t)] . (7.6)

In this general case, separation of variables is impossible and ordinary integration

methods are not useful in solving differential equations.
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In a manner similar to all other discrete numerical methods, solving a contin-

uous differential equation will involve taking a sequence of very small steps in the

independent variable and calculating approximately the evolution of the dependent

variable at the end of each step. For a well behaving function f(t) that obeys a

differential equation of the form (7.6), we can calculate its evolution after a time

step ∆t by a Taylor expansions, i.e.,

f(t + ∆t) = f(t) +
df

dt

∣

∣

∣

∣

t

∆t +
1

2

d2f

dt2

∣

∣

∣

∣

t

(∆t)2 +
1

3!

d3f

dt3

∣

∣

∣

∣

t

(∆t)3 + ... (7.7)

Ignoring terms of second or higher order in ∆t and using the definition of g[t, f(t)]

we obtain the alebgraic equation

f(t + ∆t) − f(t)

∆t
= g[t, f(t)] (7.8) Euler’s

Method

that allows us to evolve the function f(t) by a time increment ∆t. This algebraic

equation is called a difference equation and is mathematically equivalent to the

original differential equation when we take the limit ∆t → 0. The particular ap-

proximation of the differential operator we derived above is called Euler’s method

and is equivalent to the rectangle rule of integration. The error we introduce at each

timestep with Euler’s method scales as (∆t)2.

Euler’s method is an explicit, first order method for solving differential equa-

tions. It is an explicit method because calculating the value of the function f(t+∆t)

at the end of each time step ∆t depends only explicitly on the function and its

derivative evaluated at the beginning of the timestep, i.e., it depends only on f(t)

and on g[t, f(t)] (see eq. [7.8]). Moreover, it is a first order method, because it is

accurate up to the first order in ∆t; the error introduced at each time step scales

as the second power of the ∆t.

The above method can be improved by following a procedure reminiscent of the

trapezoid rule of integration. We can obtain another approximation to the value of

the function f(t+∆t) at the end of each timestep by Taylor expanding the function

backwards from t + ∆t to t, i.e.,

f(t) = f(t + ∆t) − df

dt

∣

∣

∣

∣

t+∆t

∆t +
1

2

d2f

dt2

∣

∣

∣

∣

t+∆t

(∆t)2 − 1

3!

d3f

dt3

∣

∣

∣

∣

t+∆t

(∆t)3... (7.9)

Subtracting equation (7.9) from equation (7.7) and rearranging some terms, we

obtain

f(t + ∆t) = f(t) +
1

2
{g[t, f(t)] + g[t + ∆t, f(t + ∆t)]}∆t . (7.10)

As in the case of trapezoid integration, the leading term that we neglected in equa-

tion (7.10) is of third order. This is an implicit, second order method of solving a

differential equation. Is is implicit because the value of the function f(t+∆t) at the

end of each time step is calculated by approximation (7.10) that depends implicitly

on the value of the function at the end of the timestep. It is also a second order

method, because the error introduced at each time step scales as the third power

of ∆t, as in the case of the trapezoid rule.

7.2 Accuracy of ODE solvers

The previous discussion suggests that the accuracy of a numerical method for solv-

ing differential equations increases as the timestep used decreases. However, for
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very small values of the timestep, the dependent variable does not change signifi-

cantly between timesteps and hence round-off errors affect the numerical solution.

Indeed, for every case there is an optimal timestep at which the fractional error

between the numerical and the analytic solution is minimized. In this section, we

study the accuracy of differential equation solvers and its dependence on the various

parameters of the problem.

For large values of the timestep, the systematic error of a numerical scheme

always dominates. If we use a scheme of n-th order, then the error we introduce at

every timestep between the numerical approximation (e.g., eq. [7.8] or eq. [7.10]),

is dominated by the term of order n + 1 of the Taylor expansion around the initial

value, i.e.,

f − fnum =
1

(n + 1)!

dn+1f

dtn+1

∣

∣

∣

∣

t

(∆t)n+1 + ... , (7.11)

where we used fnum and f to denote the numerical and true solutions, respectively.

The compound error after evolving the equation for a time t is approximately equal

to the product of the error per timestep (eq. [7.11]) times the total number of

timesteps taken N = t/∆t. As a result, after many timesteps, the compound error

is

f − fnum ≃ 1

(n + 1)!

dn+1f

dtn+1

∣

∣

∣

∣

t

(∆t)nt , (7.12)

Clearly, the compound error depends on the problem under study (through the

derivative term), on the order of the numerical scheme employed, on the size of

the timestep taken, and on the total time over which the differential equation is

evolved.

For small values of the timestep, it is the round-off error that dominates the

overall accuracy of the numerical solution. If we denote by ǫ the accuracy with

which a real number is stored in the computer, then the round-off error after each

timestep is about ǫ/2. The compound error after taking N = t/∆t timesteps is

approximately proportional to
√

N . Therefore, for small values of the timestep, the

compound error is

f − fnum ≃ ǫ

2

(

t

∆t

)1/2

, (7.13)

At this limit, the error depends on the machine accuracy, ǫ, the timestep, and the

total time over which the differential equation is evolved.

The systematic error introduced by the numerical approximation of the algo-

rithm decreases with decreasing size of the timestep (equation 7.24). On the other

hand, the effect of the round-off error increases with decreasing size of the timestep

(equation 7.25). As a result, there is an optimal size of the timestep at which the

combined error is minimal. Equating relations (7.24) and (7.25) we obtain

(∆t)opt ≃
[

ǫ(n + 1)!

2t1/2

(

dn+1f

dtn+1

∣

∣

∣

∣

t

)−1
]1/(n+1/2)

(7.14)

for the optimal size of the timestep. If we have expressed the differential equation

in a dimensionless form in terms of the natural units of the problem, then both

the function f and its derivatives will be of order unity. Therefore, an approximate

value for the optimal timestep after one characteristic timescale in the problem is

(∆t)opt ≃
[

ǫ(n + 1)!

2

]1/(n+1/2)

, (7.15)
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Figure 7.1: The optimal timestep (left) and the lowest possible fractional error (right) of a
numerical solution of a differential equation at t = 1, as a function of the order of the scheme used
and the machine accuracy. In this plot we have assumed that the differential equation has been
expressed in terms of the natural units of the problem.

which depends strongly on the machine accuracy, ǫ, and the order, n, of the numer-

ical scheme used (see Fig. 7.1).

This result might appear counter intuitive in two ways. First, the optimal

timestep in order for round-off errors to be avoided is significantly larger than the

machine accuracy. For a first-order scheme it is ∼ ǫ2/3 and it asymptotes towards

unity for higher orders. This is, of course, a consequence of the fact that the round-

off error competes with the systematic error of the numerical scheme and the latter

scales as (∆t)n+1. Second, and more important, is the fact that the optimal timestep

increases rapidly with the order of the numerical scheme. Indeed, we can achieve

a more accurate solution to a problem by increasing the order of the numerical

scheme, if and only if we also increase the size of the timestep. If we were to always

use the optimal timestep for a first-order scheme to solve numerically a differential

equation, the accuracy of the solution would always be the same, independent of

the order of the numerical scheme we employed.

We can, in fact, estimate the lowest possible error in our numerical solution, by

evaluating the sum of equations (7.24) and (7.25) at the optimal timestep (7.15).

The result for the fractional error is (see also the right panel of Fig. 7.1)

f − fnum

f
≃

( ǫ

2

)n/(n+1)
(

1

(n + 1)!f

dn+1f

dtn+1

∣

∣

∣

∣

t

)1/(n+1)

t

≃
( ǫ

2

)n/(n+1)
[

1

(n + 1)!

]1/(n+1)

t (7.16)

It is clear from this last expression that the error we introduce to a numerical

solution of an ordinary differential equation depends on a number of factors. First,

it depends on the particular equation being solved; the accuracy is always better for

solutions that depend very weakly on the independent variable. Second, it depends

on the order of the method used. In general, the higher the order of the scheme, the

more accurate the result. This is not always true, however, and especially if we do

not use the optimal timestep for every scheme. Third, the accuracy of a numerical

solution depends on the precision of the floating point arithmetic used, since the

latter sets the roundoff error introduced at every timestep. Finally, the accuracy of

the final result depends on the total number of timesteps taken.

We will illustrate the effect of all these factors on the accuracy of a numerical
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solution of an ordinary differential equation with the following application.

7.2.1 Application: Carbon dating

The decay of the isotope 14C of carbon is used in dating carbonaceous materials

that are younger than about 60,000 years of age. The method is based on the fact

that 14C is unstable and beta decays into 14N, an electron, and an antineutrino,

according to the reaction
14C →15 N + e− + ν̄e . (7.17)

The halftime of this reaction is equal to t1/2 = 5730 ± 40 years The equation that

describes the decay of 14C since the time of disintegration of the material, at which

point replenishment of 14C stopped, is

dfC

dt
= − ln 2

t1/2
fC , (7.18)

where fC is the concentration of 14C. The solution to this differential equation gives

the concentration of 14C as a function of the initial concentration f0 and time t

since disintegration. Measuring the current concentration of 14C and inverting this

relation leads to an absolute and accurate dating of the material.

We will use this problem, for which an analytic solution exists, in order to study

the various factors that affect the accuracy of a numerical solution to a differential

equation.

Converting Equations to Dimensionless Form.— In this problem, there is one

dependent variable, fC, which is dimensionless. On the other hand, the independent

variable t as well as the single parameter, t1/2, have units of time. We define a new

dimensionless independent variable

τ ≡ ln 2

t1/2
t (7.19)

and a normalized dependent variable

f ≡ fC

f0
, (7.20)

so that we can rewrite the differential equation in dimensionless form as

df

dτ
= −f , (7.21)

with an initial condition f(τ = 0) = 1.

Analytic Solution.— We can solve easily the differential equation (7.21) using

the method of separation of variables, i.e.,

∫ f

1

df

f
= −

∫ τ

0

τ ⇒

f(τ) = e−τ . (7.22)

In dimensional form, the solution is

fC(t) = f0e
− ln 2t/t1/2 . (7.23)

This is the analytic solution against which we will verify our numerical scheme.

Numerical Solution.— We solve the differential equation (7.21) both using the

first-order explicit Euler’s method and the second-order implicit method discussed
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Figure 7.2: (Left) The analytic solution (red line) and the numerical solution (blue circles) eval-
uated every tenth timestep, for the carbon dating problem discussed in §7.2. For this calculation,
the timestep is set to ∆t = 0.01. (Right) The fractional error between the analytic and numerical
solution for the same problem as a function of the timestep ∆t, evaluated at two different times
during the integration.

earlier. We will not discuss in detail the implementation of either method here,

because they are both surpassed in quality by the superior Runge-Kutta methods

that we will study later in this chapter.

Accuracy of the Numerical Solutions.—The left panel of figure 7.2 compares

the analytic (solid line) to the numerical (open circles) solution of the differential

equation obtained using Euler’s method with a timestep ∆τ = 0.01. It appears, at

least visually, that the numerical solution agrees very well with the analytic solution.

This is demonstrated quantitatively in the right panel of figure 7.2 that shows the

fractional error at time τ = 1 (blue line) and at time τ = 3 (red line) for the same

calculation, as a function of the timestep ∆t.

For large values of the timestep, the systematic error decreases linearly with

decreasing timestep but increases linearly with the total time over which the differ-

ential equation was evolved. This is in agreement with our previous estimate (7.24),

which applied to the current problem gives

f − fnum

f
≃ 1

2
(∆τ)τ , for large ∆t . (7.24)

On the other hand, for small values of the timestep, the error increases again with

decreasing timestep as well as with increasing total evolution time. Indeed, accord-

ing to equation (7.25) the fractional round-off error is approximately equal to

f − fnum

f
≃ ǫ

2

( τ

∆τ

)

eτ , for small ∆t . (7.25)

The optimal timestep is (∆τ)opt ≃ 10−4 and the lowest possible fractional error in

the solution is ≃ 10−4t.

We can improve the accuracy of the solution either by increasing the order of

the numerical scheme or by increasing the accuracy of the floating point arithmetic

used. In either case, however, we achieve an improved accuracy if and only if we

also change the size of the timestep appropriately. This is shown in Figure 7.3. In

the left panel, the accuracy of the first-order Eulerian scheme is compared to that of

the second-order implicit scheme. In the right panel, the accuracy of the numerical

solution is shown, when single- and double-precision floating point arithmetic is

used. Increasing the order of the numerical scheme requires an increase in the size
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Figure 7.3: The dependence on the size of the timestep of the fractional error after one e-folding
time (i.e., at τ = 1) for the problem discussed in §7.2. The left panel compares a first-order
Euler scheme with a second-order implicit scheme. The right panel compares two first-order Euler
schemes in which floating point arithmetic of single and double precission was used. In both cases,
an improvement in the accuracy of the numerical solution is achieved if and only if the size of the
timestep is also changed accordingly.

of the timestep, while increasing the accuracy of floating point arithmetic requires

a decrease in the size of the timestep.

7.3 Stability of ODE solvers

In the previous section we showed how considerations of the accuracy of a numerical

scheme lead to a minimum value of the timestep, below which round-off errors

dominate the systematic uncertainty of the method. In this section, we will discuss

how the stability of an explicit numerical scheme sets a maximum value of the

timestep, above which the method diverges and leads to unphysical results.

We will use again, as an example, the numerical solution to the differential

equation for the carbon dating problem (eq. 7.21)

df

dτ
= −f . (7.26)

Using Euler’s scheme (eq. [7.8]) to evolve this equation by ∆τ away from some

initial condition f0, we obtain

f(∆τ) = f0 +
df

dτ

∣

∣

∣

∣

τ=0

∆τ (7.27)

= (1 − ∆τ)f0 . (7.28)

After having taken N timesteps, the numerical solution becomes

f(N · ∆τ) = (1 − ∆τ)Nf0 . (7.29)

Clearly, the numerical solution has the correct asymptotic behavior

lim
N→∞

f(N · ∆τ) = 0 , (7.30)

if and only if 1 − δτ > −1, i.e., if and only if

∆τ < 2 . (7.31)
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For larger values of the timestep, the numerical solution is unstable and diverges

rapidly. This is an unphysical result and is simply an artifact of the explicit Euler

differencing scheme. In fact, most explicit numerical schemes are unstable for large

values of the timestep.

We can follow the same procedure in order to study the stability properties of

the implicit scheme of equation (7.10). For the carbon dating problem,

f(∆τ) = f0 +
1

2
[−f(0) − f(δτ)] ∆τ , (7.32)

which is equivalent to

f(δτ) =
2 − ∆τ

2 + ∆τ
f0 . (7.33)

After having taken N timesteps, the numerical solution becomes

f(N · ∆τ) =

(

2 − ∆τ

2 + ∆τ

)N

f0 , (7.34)

which is unconditionally stable. This is a characteristic of most implicit schemes.

Even though the Euler scheme was unstable for large sizes of the timestep, the

upper limit on its size that we calculated with condition (7.31) does not introduce

any problems in solving the carbon dating problem. Indeed, accuracy considerations

alone will force us to use a timestep much smaller than this upper limit (see Fig. 7.2).

There are situations, however, in which the stability of an explicit numerical scheme

is not just an intellectual curiosity but a serious limiting factor on the applicability

of the scheme. The most common situation in computational physics is the study

of systems in which phenomena occur over a wide range of timescales, which we

will discuss below.

We will start by considering a physical system that is described by a system of

first order differential equations

dfi

dt
= −

N
∑

j=1

Aijfj , j = 1, ..., N . (7.35)

We can also write this system in matrix notation as

d

dt
F = −A ·F , (7.36)

where A is a N × N positive definite matrix. Applying the Euler scheme gives

F(N · ∆t) = (1-A∆t)N · F0 , (7.37)

where 1 is the unit matrix. The numerical solution tends to zero at late times if

and only if the largest eigenvalue of the matrix C≡(1-A)∆t is less than unity. This

is equivalent to the timestep being smaller than

∆t <
2

λmax
, (7.38)

where λmax is the largest eigenvalue of the matrix A.

The inverse of each eigenvalue of the matrix A is typically the characteristic

timescale over which each physical phenomenon described by the system of equa-

tions (7.35) evolves. As a result, the Euler scheme is stable if and only if the

timestep is shorter than twice the shortest timescale, τmin, in the physical problem.

On the other hand, accuracy considerations require the timestep to be larger than


