Supplementary methods

Estimation of TMRCA using BATWING

The program Bayesian Analysis of Trees With Internal Node Generation (BATWING) (Wilson et al. 2003) was run using a model of a single population with a period of constant size followed by exponential growth. The BATWING run consisted of 2,000,000 sampled points, following 50000 steps of warmup. The parameters Nbetasamp and Treebetn were set to 20 and 15, respectively. The results were qualitatively the same for a run half as long.

The states of several SNPs were used to condition the genealogy. The SNPs considered were M91, M42, M60, M168, M96, M35, P143, M216, P14, M201, P123, M304, M9, M526, P326, M20, M184, M70, L131, PS21, P77, M214, M45, M242, M207, M267, M172, P321, and P322. To estimate the age of individual branches, the minimum time of the mutations defining a branch was extracted from the output of BATWING and the distribution of those times was used in downstream analyses. The distributions of ratios of branch ages were obtained analogously. These ratios were seen to be rather independent of the priors on effective size (data not shown). Median and mean values, and 95% confidence intervals were obtained for the age of the mutations (**Tables 1** and **2**).

Method of estimating TMRCA using the distribution of SNPs in the genealogy

Mutations ascertained in a single lineage were examined, determining their temporal distribution in the genealogy of haplogroup T. This distribution was used to calculate the likelihoods of the relative branching times within the genealogy, which can be converted into absolute times by the use of an appropriate calibration point. We used as a calibration point the TMRCA of K haplogroup, considering both 47.4 Ky (Karafet et al.2008) and 40.6Ky (according to BATWING results).

1

For uniformly ascertained mutations (in only one chromosome of the haplogroup) the probability distribution for the time of occurrence is uniform. Let us consider a branching time extending back a fraction p of the TMRCA of this lineage with the closest lineage in the ascertainment sample, and call proximal mutations those more recent than this branching time. If during the ascertainment process n mutations were ascertained to this lineage, the conditional probability of observing k proximal out of n mutations is

$$P(K=k|n, p) = \frac{n!}{k! \cdot (n-k)!} \cdot p^{k} \cdot (1-p)^{n-k}$$

The likelihood of *p* is proportional to a Beta function with parameters k+1 and n-k+1. The log-likelihood can be written as

$$\ln (L(p)) = c + k \cdot \ln (p) + (n-k) \cdot \ln (1-p),$$

where *c* is a constant.

For example, using 47.4 Ky the TMRCA of haplogroup K, we would obtain

$$\ln\left(L(t)\right) = c + k \cdot \ln\left(\frac{t}{47.4}\right) + (n-k) \cdot \ln\left(1 - \frac{t}{47.4}\right) ,$$

where *t* is the TMRCA of the internal node of interest expressed in thousands of years.

This method can be extended to the joint estimation of several nodes along a lineage by extending the approach to a multidimensional case. Branching events divide the history of a lineage in different periods, and the number of mutations follows a multinomial distribution in which the parameters are proportional to the length of those periods. Then, the probability of observing $k_1,..., k_m$ mutations in the *m* periods determined by the *m-1* branching points is

$$P\left(K_{1}=k_{1},\ldots,K_{m}=k_{m}\left|\sum_{i=1}^{m}k_{i},p_{1},\ldots,p_{m-1}\right|=\frac{\left(\sum_{i=1}^{m}k_{i}\right)!}{\prod_{i=1}^{m}k_{i}!}\cdot\prod_{i=1}^{m-1}p_{i}^{k}\cdot\left(1-\sum_{i=1}^{m-1}p_{i}\right)^{n-k}$$

The likelihood function follows a Dirichlet distribution. Correspondingly, the log-likelihood can be written as

$$\ln (L(p_{1,...,p_{m}})) = c + \sum_{i=1}^{m-1} k_{i} \cdot \ln (p_{i}) + k_{m} \cdot \ln \left(1 - \sum_{i=1}^{m-1} p_{i}\right)$$

Joint use of SNPs and STRs

The estimation of the TMRCA involving STRs and SNPs uses the likelihood calculated from SNPs and an approximation of the likelihood given by STRs. The approximation takes the posterior distribution of TMRCA obtained from BATWING, bins the range of the TMRCA and uses the frequency of data points within each bin of TMRCA as an estimation of the likelihood corresponding to the bin. The relative value of the likelihood is assigned to the middle point of the bin. As the mutational processes in SNPs and STRs are independent, the log-likelihoods can be added.

Estimation of TMRCA for haplogroups T and L

Most mutations in haplogroup T and the mutation P326 were not discovered by uniform ascertainment of SNPs. We made some considerations on how the ascertainment process influence the estimated likelihoods for the relative ages of the branching events. Ascertainment bias is unlikely to affect the relative number of mutations observed in the branch containing M184, M272, M193, L206 and PS129 compared with the branch containing M70 and PS78 (**Figure 1**), because the frequency of T* is extremely low. Given that the mutation P326 was discovered while sequencing samples in haplogroup T, the branch containing it should not have an excess of discovered mutations. The question of how many mutations are expected between the MRCA of T1 and a tip in the tree was addressed by considering that in Rozen et al. (2009) one sample has two mutations, PS2 and PS21, and the other has none. We chose 1 as the expected value. We repeated the calculation using nine mutations to estimate the TMRCA values of TL, T and T1, and then combined the likelihood with those coming from BATWING.

3

References

- Rozen, S., J. D. Marszalek, R. K. Alagappan et al. 2009. Remarkably little variation in proteins encoded by the Y chromosome's single copy genes, implying effective purifying selection. *Am J Hum Genet* 85: 923-928
- Karafet, T. M., F. L. Mendez, M. B. Meilerman et al. 2008. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. *Genome Res* 18: 830-838.
- Wilson, I. J., Weale, M. E., Balding, D. J. 2003. Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities. *J Roy Stat Soc: Series A* 166: 155-188.

Population	Set1ª	Set 2 ^b	Set 3 ^c
Egyptians (Egy)	150	122	10
Tunisians (Tun)	34	-	-
Ethiopians (Eth)	58	-	2
Palestinians (Pal)	115	111	6
Bedouins (Bed)	28	27	-
Druze (Dru)	39	35	3
Jordanians (Jor)	187	181	5
Lebanese (Leb)	34	26	-
Syrians (Syr)	95	90	3
Turks (Tur)	284	122	3
Assyrians (Asr)	31	31	4
Iraqis (Irq)	36	31	2
Iranians (Irn)	73	60	1
Saudi Arabians (Sau)	33	32	-
Yemeni (Yem)	18	17	-
Moroccan Jews (MorJ)	54	26	4
Tunisian Jews (TunJ)	10	9	-
Ethiopian Jews (EthJ)	21	-	1
Kurdish Jews (KurJ)	50	13	8
Iraqi Jews (ItqJ)	32	30	6
Iranian Jews (IrnJ)	22	-	2
Yemenite Jews (YemJ)	44	32	3
Uzbeki Jews (UzbJ)	9	-	-
Bulgarian Jews (BulJ)	42	41	2
Turkish Jews (TurJ)	34	34	2
Roman Jews (RomJ)	53	43	3
Ashkenazi Jews (AshJ)	587	139	6
Bulgarians (Bul)	29	27	-
Lemba (Lem)	34	-	6
Israeli Jew	-	-	1
Dutch	-	-	1
French	-	-	1
German	-	-	1
Italians	-	-	4
Total	2236	1279	90

Table S1. Sample sizes from each population in the three sets of genotyped samples

^a Samples used to estimate the frequency of haplogroup T and its sub-branches

^b Samples run in BATWING for populations that are treated as a single population and genotyped for at least 10 Y-STRs

 $^\circ$ Samples belonging to haplogroup T and genotyped for at least 24 Y-STRs

SNP	RefSNP ID	Chr.Y position	Forward Primer	Reverse Primer	PCR Size (bp)	Mutation	Site	Haplogroup	Reference
M70	rs2032672	20353269	GGTTATCATAGCCCACTATACTTTG	ATCTTTATTCCCTTTGTCTTGCT	257	A->C	45	T1	Underhill et al. 2001
M184=USP9Y+3178	rs20320	13407557	CACTITATITTAGTCTGTGTCTTTTTC	AAACTTAGTAACATCTATTTCTCCTCT	305	G->A	62	т	Underhill et al. 2001
M193	rs2032676	13523899	GCCTGGATGAGGAAGTGAG	GCCTTCTCCATTTTTGACCT	427	4 bp insertion	56	т	Underhill et al. 2001
M272	rs9341308	21148163	CAGGAGGGGACCATGTTTT	CAGCAAAGATTTAATGGACATTT	496	A->G	212	т	Shen et al., 2004
M320	rs13447374	13540161	TGAGGTGGAATGTATCAGTATACC	TGATTTCAAGGATTTGTTAGTCTT	444	T->G	60	T1a1	Shen et al., 2004
PS2 (Page_S2)	rs35815655	6796443	CACCATTTTCACAGGATTTGC	TTGACAGGATTGCTTTAGTGAGTC	896	C->T	413	T1a	Repping et al. 2006, this paper
PS21 (Page_S21)	rs34179999	14528466	GTGACACCTTCTTCAGTTGC	GAGACTACAGATTTTTTTCCCAT	1980	G->C	419	T1a	Repping et al. 2006, this paper
PS78 (Page_S78)	rs34941773	13358043	GTTAGAAGCAACAATAGCAAAACT	TCATTTCAACCAAGCCATC	191	G->C	97	Τ1	Repping et al. 2006, this paper
PS129 (Page_S129)	rs72625385	13981957	AAGAAGAAAAAATGGGCAAG	TTCAAGACAGTATTTAACAGCAAG	138	C->T	83	т	Rozen et al. 2009, this paper
L131	rs2215828	17882202	AGGAAGAGAGAGATAGGCAAC	GGATTATTATCACCCTGGACT	472	C->T	368	T1b	present paper
L206		16671880	TATGGAATGGATACTTGCTT	TTCAGGGATAAGAAATAGTTTG	597	T->deletion	207	T1	present paper
P77		13435596	TGTGGTAAGTGTAGTTTCAA	TCTGGACTGGAAACATAA	475	G->A	72	T1a2	Hammer et al. 2003
P317		14529767	GTGACACCTTCTTCAGTTGC	GAGACTACAGATTTTTTTCCCAT	1980	C->T	1721	T1a4a	present paper
P321		14528119	GTGACACCTTCTTCAGTTGC	GAGACTACAGATTTTTTTCCCAT	1980	C->T	74	T1a4	present paper
P322		12510929	TGTCACCTCTCAATAGCAGC	GCATTTTCCATCTGTTCTCT	857	G->T	146	T1b1	present paper
P326		8527290	GCTCATTCTCTCAGGCAAG	GAGTTCTCCTCCCCTAAGC	781	T->C	598	LT	present paper
P327		17256799	TAAGCAGCCATCAAAAGAAC	TGTTTTATTTGAATGTTTGAAGG	971	T->C	696	T1b1a	present paper
P328		20303699	TCTGGAACCCCTGGAGAGATC	AACCCCTGCCACAAATACAT	625	C->T	544	T1b1	present paper
P330		14528411	GTGACACCTTCTTCAGTTGC	GAGACTACAGATTTTTTCCCAT	1980	T->C	365	T1a3	present paper

Table S2. Primer information, reference SNP ID and Y position for all polymorphic markers included in this work

Supplementary Figure Legends

Supplementary Figure 1.

Two-dimensional plots based on a principal component decomposition of the kinship R matrix derived from the Y chromosome haplogroup frequencies: (a) 28 populations; (b) 27 populations; (c) 26 populations; (d) 25 populations; (e) 24 populations; (f) 23 populations. The population codes are as follows: Assyr (Assyrians), Bed (Bedouins), Bulg (Bulgarians), Druze (Druze), Egypt (Egyptians), Iran (Iranians), Iraq (Iraqis), Jor (Jordanians), Leb (Lebanese), Lemba (Lemba), Eth (Ethiopians), Palest (Palestinians), Saudi (Saudi Arabians), Syr (Syrians), Tun (Tunisians), Turks (Turks), Ash (Ashkenazi Jews), BulJ (Bulgarian Jews), IranJ (Iranian Jews), IraqJ (Iraqi Jews), KurdJ (Kurdish Jews) MorJ (Moroccan Jews), RomJ (Roman Jews), TunJ (Tunisian Jews), TurkJ (Turkish Jews), UzbJ (Uzbeki Jews), Yem (Yemenis), YemJ (Yemenite Jews).