Topic 1:

Course Background

(or: Why You're Here, and What You Learned to Get Here)

Background - CSc 144 v1.0 (McCann) - p. 1/31

What Is Discrete Math?

Definition: Discrete Mathematics	
	•

Contrast this with 'the calculus,' which was developed by Newton and Leibniz to study objects in motion. As a result:

- 'The Calculus' tends to focus on real values
- Discrete Mathematics tends to focus on integer values

Sample Discrete Math Topics

Topics that fall under the umbrella of discrete math include:

- Integral Functions and Relations
- Sets
- Sequences and Summations
- Counting (Permutations/Combinations, etc.)
- Discrete Probability

To understand those, you also need:

- First-Order Logic
- Logical Arguments
- Proof Techniques
- ... and a fair amount of pre-calculus mathematics

Background - CSc 144 v1.0 (McCann) - p. 3/31

"But Why Do I Have To Take Discrete Math?"

Discrete Structures is an ACM/IEEE core curriculum topic

See:

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

DM topics underlie much of Computer Science, including:

- Logic → Knowledge Representation, Reasoning,
 Natural Language Processing, Computer Architecture
- ullet Proof Techniques o Algorithm Design, Code Verification
- Relations → Database Systems
- Functions → Hashing, Programming Languages
- Recurrence Relations → Recursive Algorithm Analysis
- Probability → Algorithm Design, Simulation

Topics You May Need To Review

- Mathematical concepts, including, but not limited to:
 - Fractions
 - Rational Numbers
 - Basics of Sets
 - o Associative, Commutative, Distributive, and Transitive Laws
 - Properties of Inequalities
 - Summation and Product Notation
 - Integer Division (Modulo, Divides, and Congruences)
 - Even and Odd Integers
 - Logarithms and Exponents
 - Positional Number Systems

The Math Review appendix (available from the class web page) can help you review these topics.

Background - CSc 144 v1.0 (McCann) - p. 5/31

Notations for Sets of Values

\mathbb{Z}	All integers	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
$\mathbb{Z}^+, \mathbb{N}^+$	All positive integers	$\{1,2,3,\ldots\}$
$\mathbb{Z}^*, \mathbb{N}_0$	The non-negative integers	$\{0, 1, 2, 3, \ldots\}$
\mathbb{Z} even	Even integers	$\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
\mathbb{Z} odd	Odd integers	$\{\ldots, -3, -1, 1, 3, \ldots\}$
\mathbb{Q}	Rational numbers	a/b , $a,b \in \mathbb{Z}, b \neq 0$
$\overline{\mathbb{Q}}$	Irrational Numbers	$\{i \mid i \not\in Q\}$
\mathbb{R}	The real values	$\{\mathbb{Q}\cup\overline{\mathbb{Q}}\}$

Note: Avoid the term "natural numbers" and the plain \mathbb{N} .

Background - CSc 144 v1.0 (McCann) - p. 7/31

Associativity

Background - CSc 144 v1.0 (McCann) - p. 9/31

Transitivity

		100		
_	ro	<u> ←ti</u>		nc
	1 1	(. [I()	ns
	. ~			\cdot

Background -	CSc 144	v1.0 (Mc	Cann) - I	o. 11/3

Rational and Irrational Numbers

Definition: Rational Number
Example(s):
A real number that is not rational is irrational . Example(s):

Basic Set Operators (1 / 2)

- 1. Union (\cup): $A \cup B$ contains all elements of both set A and set B
- 2. Intersection (\cap) : $C \cap D$ contains only the elements present in both sets C and D
- 3. Difference (-): E-F contains only the elements of set E that are **not** also in set F

(**Note:** Take out the "not," and you've got a definition for \cap)

4. Complement $(\overline{\Box})$: Given a set G, $\overline{G} = U - G$

Note: $X - Y = X \cap \overline{Y}$

Background - CSc 144 v1.0 (McCann) - p. 13/31

Basic Set Operators (2 / 2)

Example(s):	

Summation and Product Notation

$$\sum_{i=1}^{5} 2i = 2(1) + 2(2) + 2(3) + 2(4) + 2(5) = 30$$

where:

- ullet Σ is the ______.
- ullet i is the ______.
- 1 is the ______.
- 5 is the _____.
- ullet 2i is the _____.

Background - CSc 144 v1.0 (McCann) - p. 15/31

Summation and Product Notation (cont.)

Switch Σ to Π (capital Pi) for multiplication:
Example(s):
Use parentheses to eliminate confusion:

Example(s):

Nested Summations and Products

Much like nested FOR loops.	
Example(s):	_
Background – CSc 144 v1.0 (McCann) – p. 1	7/31
Modulo and Divides	
$\frac{ \mbox{Modulo and Divides}}{\mbox{Integer Division} \rightarrow \mbox{quotients; Modulo} \rightarrow \mbox{remainders}}$	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	
Integer Division $ o$ quotients; Modulo $ o$ remainders	

Modulo and Divides (cont.)

	ition: Divides
xam	ple(s):
	• • •
	Background – CSc 144 v1.0 (McCann) – p. 19/31
ong	gruences
	ition: Congruent Modulo m
	led the $\it base$, $\it r$ is the $\it residue$ or $\it remainder$, and $\it m$ is the $\it modulus$)
	led the $\it base$, $\it r$ is the $\it residue$ or $\it remainder$, and $\it m$ is the $\it modulus$)

Laws of Exponents

- 1. $w^{x+y} = w^x w^y$
- **2.** $(w^x)^y = w^{xy}$
- 3. $v^x w^x = (vw)^x$
- 4. $\frac{w^x}{w^y} = w^{x-y}$
- 5. $\frac{v^x}{w^x} = (\frac{v}{w})^x$

Background - CSc 144 v1.0 (McCann) - p. 21/31

Laws of Logarithms

The connection between exponents and logarithms:

If
$$b^y = x$$
, then $log_b x = y$.

For each of the following laws, a, b > 0 and $a, b \neq 1$:

- 1. $\log_a x = \frac{\log_b x}{\log_b a}$
- 2. If m > n > 0, then $log_b m > log_b n$
- 3. $b^{\log_b x} = x$
- 4. $log_b(x^y) = ylog_b x$
- 5. $log_b(xy) = log_b x + log_b y$
- 6. $log_b(\frac{x}{y}) = log_b x log_b y$

Number Systems: Decimal

The Base 10 (a.k.a. Decimal, a.k.a. Arabic) System

- 10 symbols (glyphs): 0,1,2,3,4,5,6,7,8 and 9.
- In a string of symbols, each position is worth the product of the symbol's value and a power of 10, starting with $10^0=1$ on the right.

Example(s):

Background - CSc 144 v1.0 (McCann) - p. 23/31

Number Systems: Binary

The Base 2 (a.k.a. Binary) System

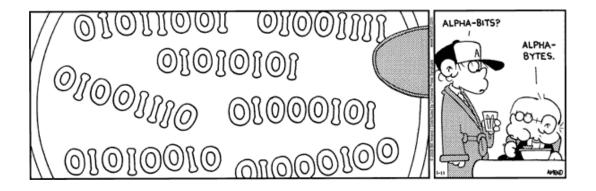
- Just 2 symbols: 0 and 1.
- Each position is valued with increasing powers of 2.

Example(s):

Converting Decimal to Binary

	Repeated divisions by 2 Example(s):
2.	Sums of powers of 2
	Example(s):
	Background – CSc 144 v1.0 (McCann) – p. 25/31
N I	umbor Systoms: Ostal
NU	ımber Systems: Octal
	ey point: Octal is based on groups of 3 binary digits)
(Ke	
(Ke	ey point: Octal is based on groups of 3 binary digits)
(Ke	ey point: Octal is based on groups of 3 binary digits) e Base 8 (a.k.a. Octal) System
(Ke	ey point: Octal is based on groups of 3 binary digits) e Base 8 (a.k.a. Octal) System 8 symbols: 0 through 7, inclusive

Converting Octal to ...


Decimal: Multiply digits by powers of 8:
Example(s):
Binary: Convert digits to binary, and "degroup:"
Example(s):
Background – CSc 144 v1.0 (McCann) – p. 27/31
Number Systems: Hexadecimal
(Key point: 'Hex' is based on groups of 4 binary digits)
The Base 16 (a.k.a. Hexadecimal) System
The Base To (annual Hoxadosimal) System
 16 symbols: 0-9, inclusive, and A-F, inclusive
• 16 symbols: 0-9, inclusive, and A-F, inclusive
 16 symbols: 0-9, inclusive, and A-F, inclusive Each position is valued with increasing powers of 16
 16 symbols: 0-9, inclusive, and A-F, inclusive Each position is valued with increasing powers of 16
 16 symbols: 0-9, inclusive, and A-F, inclusive Each position is valued with increasing powers of 16

Why Hexadecimal Is More Common Than Octal

Background - CSc 144 v1.0 (McCann) - p. 29/31

What's The Secret Message?

"Foxtrot" from January 11, 2006:

Hint: Find an ASCII table!

Remember!

The math review topics are used in this class, and direct questions about them will be asked on quizzes, Exam #1, and the Final Exam.

If you are not confident in your knowledge of them:

- Read Appendix A in "Kneel Before \mathbb{Z}^{odd} ,"
- Attend a Supplemental Instruction (SI) session, and
- Review and self-test the topics on your own!

Background - CSc 144 v1.0 (McCann) - p. 31/31