Direct Proofs of $p \to q$

Direct Proofs - CSc 144 v1.0 (McCann) - p. 1/16

Handful O' Definitions (1 / 2)

Definition: Conjecture
Definition: Theorem
Definition: Proof

Handful O' Definitions (2 / 2)

Definition: Lemma	
Definition: Corollary	
Example(s):	

Direct Proofs - CSc 144 v1.0 (McCann) - p. 3/16

Why do People Fear Proofs?

- 1. Proofs don't come from an assembly line.
 - ► Need knowledge, persistence, and creativity
- 2. Creating proofs seems like magic.
 - ▶ But they are systematic in many ways
- 3. Proofs are hard to read and understand.
 - ► Only if the writer makes them so
- 4. Institutionalized Fear.
 - ► Many teachers avoid them in classes

Constructing a proof? Remember:

- 1. There are several proof techniques for a reason.
 - ▶ One may be easier to use than the others
- 2. Knowledge of mathematics is important.
 - ▶ Remember our Math Review?
- 3. There are "tricks" to know.
 - ► Ex: Dividing an even # in half leaves no remainder
- 4. Practice helps ... a lot!
 - ▶ Just as it does for most everything else
- 5. Dead ends are expected.
 - ▶ Proofs in books are the final, polished versions

Direct Proofs - CSc 144 v1.0 (McCann) - p. 5/16

Types Of Proof In This Class

- 1. Direct Proof
 - ► The most common variety
- 2. Proof by Contraposition
 - ► Like Direct, but with a twist
- 3. Proof by Contradiction
 - ► A dark road on a foggy night

Our First Conjecture

Conjecture: If n is even, then n^2 is also even, $n \in \mathbb{Z}$.							

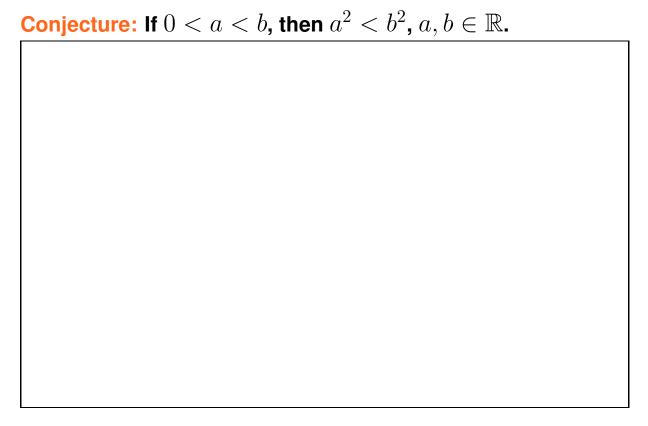
Proof-Writing Miscellanea

- Remember: A conjecture isn't a theorem until proven.
- Don't lose sight of your destination.
- When writing proofs in this class:
 - 1. Always start with "Proof (style):"
 - 2. Stating your allowed assumptions can help.
 - 3. Define all introduced variables.
 - 4. End proofs with "Therefore," and the conjecture.

[Outside of this class: "Q.E.D." (quod erat demonstrandum, Latin for "this was to be demonstrated.")]

Direct Proofs - CSc 144 v1.0 (McCann) - p. 9/16

A Conjecture About Inequalities



Question: How would you prove that $\forall x \, C(x)$ is true,

where $x \in \{6, 28, 496\}$?

Direct Proofs - CSc 144 v1.0 (McCann) - p. 11/16

A Direct Proof Employing Cases

Conjecture: $s \to r \equiv \neg r \to \neg s$

Proof (direct): Consider all possible combinations

of values of r and s:

$$r \quad s \quad s \to r \quad \neg r \to \neg s$$

Case 1: | T | T | T | T

Case 2: | T | F | T | T

Case 3: F T F F Case 4: F F T T

Therefore, $s \to r \equiv \neg r \to \neg s$.

(Yes, this truth table is a direct proof by cases.)

A More Interesting Direct Proof With Cases



Direct Proofs - CSc 144 v1.0 (McCann) - p. 13/16

Poor Arguments → Poor Proofs (1 / 2)

Conjecture: 1 < 0.

Proof or Goof?:

Consider x such that 0 < x < 1. Take the base–10 logarithm of both sides of x < 1: $log_{10}x < log_{10}1$. By definition, $log_{10}1 = 0$. Divide both sides by $log_{10}x$: $\frac{log_{10}x}{log_{10}x} < \frac{0}{log_{10}x}$, which reduces to 1 < 0.

Therefore, 1 < 0.

Poor Arguments — Poor Proofs (2 / 2)

Conjecture: For all $n \in \mathbb{Z}^{odd}$, $(n^2 - 1)\%4 = 0$.

Proof or Goof?:

Let x = 1. $1^2 - 1 = 0$. 0%4 = 0. Let x = 3. $3^2 - 1 = 8$.

$$8\%4 = 0$$
. Let $x = 5$. $5^2 - 1 = 24$. $24\%4 = 0$. This

shows no sign of failing to give a result of 0.

Therefore, for all $n \in \mathbb{Z}^{odd}$, $(n^2 - 1)\%4 = 0$.

Direct Proofs - CSc 144 v1.0 (McCann) - p. 15/16

Disproving Conjectures

Typical approaches:

- (1) Prove that the conjecture's negation is true.
- (2) Find a counter-example. (Very commonly used!)

Example(s):