Additional Set Concepts

Sets - CSc 144 v1.0 (McCann) - p. 1/17

Set Concepts Already Covered

You may wish to review these basic set concepts, previously covered in the Math Review appendix, before starting this topic:

- Properties of sets (e.g., duplicate members are not allowed)
- Set notation (membership, set builder notation, etc.)
- Operators (union, intersection, difference, complement, cardinality)
- Venn diagrams

Why Are We Learning More About Sets?

Sets are foundational in many areas of Computer Science.

For example:

Sets - CSc 144 v1.0 (McCann) - p. 3/17

Subsets

Definition: Subset

Definition: Proper Subset

Example(s):

Set Equality

Definition: Set Equality

Example(s):

Sets - CSc 144 v1.0 (McCann) - p. 5/17

Power Sets

Definition: Power Set

.

Example(s):

Generalized Forms of \cup and \cap

Remember summation and product notations? E.g.:

$$\sum_{n=0}^{9} (2n+1)$$

Similar notation is used to generalize the union and intersection operators.

```
Assuming that A_1 \ldots A_m and B_1 \ldots B_n are sets, then:
```

Sets - CSc 144 v1.0 (McCann) - p. 7/17

Two More Set Properties

Definition: Disjoint

Definition: Partition

Example(s):

Examples of Set Identities

Look familiar?

Associativity	$(A \cap B) \cap C = A \cap (B \cap C)$
	$(A \cup B) \cup C = A \cup (B \cup C)$
Commutativity	$A \cap B = B \cap A$
	$A \cup B = B \cup A$
Distributivity	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan	$\overline{A\cup B}=\overline{A}\cap\overline{B}$
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

Note: As with logical identities, you need not memorize set identities.

Sets - CSc 144 v1.0 (McCann) - p. 9/17

Expressing Set Operations in Logic

We've seen the first two already.

$$\begin{aligned} X &\subseteq Y \equiv \forall z \, (z \in X \to z \in Y) \\ X &\subset Y \equiv \forall z \, (z \in X \to z \in Y) \, \land \, \exists w \, (w \not\in X \, \land \, w \in Y) \end{aligned}$$

For those that return sets, Set Builder notation is a good choice:

Proving Set Identities (1 / 4)

To prove that set expressions ${\cal S}$ and ${\cal T}$ are equal, we can:

- 1. Prove that $S \subseteq T$ and $T \subseteq S$, or
- 2. Convert the equality to logic, prove it, and convert back

Example(s):

Sets - CSc 144 v1.0 (McCann) - p. 11/17

Proving Set Identities (2 / 4)

Conjecture: $S \cup \mathcal{U} = \mathcal{U}$

Sets - CSc 144 v1.0 (McCann) - p. 13/17

Proving Set Identities (4 / 4)

Conjecture: $S \cup \mathcal{U} = \mathcal{U}$

Final Set Operator: Cartesian Product (1 / 2)

Definition: Ordered Pair

Example(s):

Sets - CSc 144 v1.0 (McCann) - p. 15/17

Final Set Operator: Cartesian Product (2 / 2)

. . .

Definition: Cartesian Product

Example(s):

Notes:

Sets - CSc 144 v1.0 (McCann) - p. 17/17