Functions

Functions as Relations (1/2)

Consider: $f(x)=x+1, x \in \mathbb{Z}$

Definition: Function

Functions as Relations (2 / 2)
Example(s):

Function Terms (1/2)

Let $f: X \rightarrow Y$ be a function. $f(n)=p[(n, p) \in f]$.

- X is the \qquad of f
- Y is the \qquad of f
- $f \quad X$ to Y
- p is the \qquad of n
- n is the \qquad of p
- f 's \qquad is the set of all images of X 's elements

Note: A function's range need not equal its codomain.

Function Terms (2 / 2)

Example(s):

Digraph Representation (1 / 2)

Example(s):

$$
\begin{aligned}
g=\{(a, b) \mid b=a / 2\}, & a \in\{0,2,4,8\} \\
& b \in\{0,1,2,3,4,5\}
\end{aligned}
$$

codomain

Digraph Representation (2 / 2)
Example(s):

Two Functions You Need To Know (1 / 4)

1. Floor $(\lfloor x\rfloor)$

Definition: Floor Function

Example(s):

Two Functions You Need To Know (2 / 4)

1. Floor $(\lfloor x\rfloor)$ (cont.)

Using Floor for Rounding to the Nearest Integer

Two Functions You Need To Know (3 / 4)

2. Ceiling ($\lceil x\rceil$)

Definition: Ceiling Function

Example(s):

Two Functions You Need To Know (4 / 4)

2. Ceiling ($\lceil x\rceil$) (cont.)

Example(s):

Example: Type A UPC Code Check Digits

The check digit equals the image of this function:
$s=$ Sum of digits in positions $1,3,5,7,9, \& 11$
$t=$ Sum of digits in positions $2,4,6,8, \& 10$
$u=3 s+t$; the check digit is $(10-u \% 10) \% 10$.
Using the above sample:
$s=39, t=24$, and $u=3(39)+24=141$.
The check digit $=(10-141 \% 10) \% 10=9$.

Graphs Of Functions (1 / 2)

Important Distinction: Continuous vs. Discontinuous Functions
Consider: $f=\{(x, x+1) \mid x \in \ldots\}$

Graphs Of Functions (2 / 2)

How should the graph of our long-distance calling plan function look?
$\operatorname{Cost}($ length $)= \begin{cases}50 \text { cents } & \text { if length } \leq 10 \text { minutes } \\ 50+5 \cdot\lceil\text { length }-10\rceil \text { cents } & \text { Otherwise }\end{cases}$

Categories of Functions: Injective

Definition: Injective Functions (a.k.a. One-to-one)
\square

Example(s):

Categories of Functions: Surjective

Definition: Surjective Functions (a.k.a. Onto)

\square

Example(s):

Categories of Functions: Bijective

Definition: Bijective Functions (a.k.a. One-to-one Correspondence)
\square

Example(s):

Odds and Ends

Definition: Functional Composition

Let $f: Y \rightarrow Z$ and $g: X \rightarrow Y$. The composition of f and g, denoted $f \circ g$, is the function $h=f(g(x))$, where $h: X \rightarrow Z$.

Definition: Inverse Functions

Beyond Unary Functions

Definition: Binary Functions
\square

Example(s):

