Indirect ("Contra") Proofs of p o q

Indirect Proofs - CSc 144 v1.0 (McCann) - p. 1/11

Review of Direct Proofs

To prove a conjecture of the form $p \to q$ by using a Direct Proof, we:

Assume that p is true, and Show that q's truth logically follows.

Reminders:

- If p is actually true, the proof is a sound argument.
- ullet If p is only assumed true, the argument is merely valid.

"Indirect" Proofs

We can replace $p\to q$ with a logically equivalent form to create additional "indirect" proof techniques.

Example(s):				

Indirect Proofs - CSc 144 v1.0 (McCann) - p. 3/11

Proof by Contraposition

(a.k.a. Proof of the Contrapositive)

Example #1: Proof by Contraposition

Conjecture: If $ac \leq bc$, then $c \leq 0$, when $a > b$.	

Indirect Proofs - CSc 144 v1.0 (McCann) - p. 5/11

Example #2: Proof by Contraposition

Conjecture: If n^2 is even, then n is even.				

Proof by Contradiction

(a.k.a. Reductio ad Absurdum)

Recall the Law of Implication: $p \to q \equiv \neg p \lor q$

Indirect Proofs - CSc 144 v1.0 (McCann) - p. 7/11

Example #1: Proof by Contradiction

Conjecture: If 3(n-6) is odd, then n is odd.

Example #2: Proof by Contradiction (1 / 2)

Conjecture: The sum of the squares of two odd integers			
is never a perfect square. (Or: If $n=a^2+b^2$, then n is			
not a perfect square, where $a,b\in\mathbb{Z}^{odd}$.)			

Indirect Proofs - CSc 144 v1.0 (McCann) - p. 9/11

Example #2: Proof by Contradiction (2 / 2)

How To Prove Biconditional Expressions

(i.e., Conjectures Of The Form $p \leftrightarrow q$)

Example(s):					

Indirect Proofs - CSc 144 v1.0 (McCann) - p. 11/11