Indirect ("Contra") Proofs of $p \rightarrow q$

Review of Direct Proofs

To prove a conjecture of the form $p \rightarrow q$ by using a Direct Proof, we:

Assume that p is true, and
Show that q 's truth logically follows.

Reminders:

- If p is actually true, the proof is a sound argument.
- If p is only assumed true, the argument is merely valid.

"Indirect" Proofs

We can replace $p \rightarrow q$ with a logically equivalent form to create additional "indirect" proof techniques.

Example(s):

Proof by Contraposition

(a.k.a. Proof of the Contrapositive)

Example \#1: Proof by Contraposition

Conjecture: If $a c \leq b c$, then $c \leq 0$, when $a>b$.

Example \#2: Proof by Contraposition

Conjecture: If n^{2} is even, then n is even.

Proof by Contradiction

(a.k.a. Reductio ad Absurdum)

Recall the Law of Implication: $p \rightarrow q \equiv \neg p \vee q$

Example \#1: Proof by Contradiction

Conjecture: If $3(n-6)$ is odd, then n is odd.

Example \#2: Proof by Contradiction (1 / 2)

Conjecture: The sum of the squares of two odd integers

 is never a perfect square. (Or: If $n=a^{2}+b^{2}$, then n is not a perfect square, where $a, b \in \mathbb{Z}^{\text {odd }}$.)
Example \#2: Proof by Contradiction (2 / 2)

How To Prove Biconditional Expressions

(i.e., Conjectures Of The Form $p \leftrightarrow q$)

Example(s):

