Topic 11:

Sequences and Strings

Sequences & Strings - CSc 144 v1.0 (McCann) - p. 1/20

Definition: Sequence [1st Attempt]	
Notation:	
Example(s):	

Rules

Reca	$\sum_{i=1}^{n} 2i$	
Exa	<i>i</i> =1 ple(s):	
Two	lotations for Infinite Sequences:	
1110	iotationo foi inimito coquentoso.	
	Sequences & Strings – CSc 144 v1.0 (McCann) – p. 3/20	
Sec	uences and Functions	
	uences and Functions ition: Sequence [Final Version]	
Defi		
Defi	ition: Sequence [Final Version]	
Defi	ition: Sequence [Final Version]	
Defi	ition: Sequence [Final Version]	
Defi	ition: Sequence [Final Version]	

Arithmetic and Geometric Sequences

Definition: Arithmetic Sequence (a.k.a. Arithmetic Progression)

Definition: Geometric Sequence (a.k.a. Geometric Progression)

Example(s):

Sequences & Strings - CSc 144 v1.0 (McCann) - p. 5/20

Arithmetic Series

The sum of the terms of an arithmetic sequence (a.k.a.

arithmetic series): $s_n = a_1 + \ldots + a_n = \frac{1}{2}n(a_1 + a_n)$

Here's why: First, note that $a_n = a_1 + (n-1)d$.

Next, here are two expressions for s_n :

$$s_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-1)d)$$

$$s_n = (a_n - (n-1)d) + (a_n - (n-2)d) + \dots + (a_n - d) + a_n$$

Sum these expressions, and the d terms cancel, leaving:

$$2s_n = na_1 + na_n$$
, or $s_n = \frac{1}{2}n(a_1 + a_n)$.

Increasing Sequences

Definition: Increasing Sequence	
Definition: Non-Decreasing Sequence	
Definition: Strictly Increasing Sequence	
	Sequences & Strings – CSc 144 v1.0 (McCann) – p. 7/20
Decreasing Sequences	
Definition: Decreasing Sequence	
Definition: Non-Increasing Sequence	
Definition: Strictly Decreasing Sequence	•

Examples: Increasing/Decreasing Sequences

Subsequences Definition: Subsequence Example(s):	Strings – CSc 144 v1.0 (McCann) – p. 9/20
Subsequences Definition: Subsequence	Strings – CSc 144 v1 0 (McCann) – n. 9/20
Subsequences Definition: Subsequence	Strings – CSc 144 v1 0 (McCann) – n 9/20
Definition: Subsequence	Samge 555 : (654) p. 5/25
xample(s):	
xample(s):	
xample(s):	
xample(s):	
- 1 (-)	

Need to Identify a Sequence?

The Online Encyclopedia of Integer Sequences

(http://oeis.org/)

Example(s):	
	Sequences & Strings – CSc 144 v1.0 (McCann) – p. 11/20
Strings (1 / 2)	Somewhat beyond the programming language kind
Definition: String	
Example(s):	

Strings (2 / 2)

Notation:

- ullet Lambda (λ) represents the empty (null) string
- xy means strings x and y are concatenated
- Superscripts denote repetition of concatenation
- ullet |x| represents the length of string x
- A^* is the set of strings that can be formed using elements of an alphabet A.
 - $\circ A^*$ is an infinite set
 - $\circ \lambda \in A^*$

Sequences & Strings - CSc 144 v1.0 (McCann) - p. 13/20

Set Cardinality Revisited (1 / 5)

An observation about set cardinality:

Definition: Finite

Set Cardinality Revisited (2 / 5)

Definition: Co	untably Infinite (a.k.a. Denumerably Infinite)
Definition: Co	untable
	Sequences & Strings – CSc 144 v1.0 (McCann) – p. 15/20
et Cardin	sequences & Strings - CSc 144 v1.0 (McCann) - p. 15/20
Set Cardin Example(s):	

Set Cardinality Revisited (4 / 5)

	i. Ale tile p			bers coun	table?
				Sequences & Strings – CS	c 144 v1.0 (McCann) - p. 17/20
et Ca	rdinality	Revisite	ed (5 / 5)	
	rdinality ure: A pairi				

Now You Can Understand More Cartoons! (1/2)

Background: Elephant jokes became popular form of absurdist humor in the U.S. in the 1960s. For example:

Q: How many elephants can fit in a Jeep?

A: Four – Two in the front and two in the back.

Q: How many bison can fit in a Jeep?

A: None – it's full of elephants.

Q: How do you know when there are two elephants in your closet?

A: You hear giggling when the door is closed.

Q: How do you know when there are three elephants in your closet?

A: You can't close the door.

Q: How do you know when there are four elephants in your closet?

A: There's an empty Jeep in the driveway.

Sequences & Strings - CSc 144 v1.0 (McCann) - p. 19/20

Now You Can Understand More Cartoons! (2/2)

http://www.userfriendly.org/cartoons/archives/05jun/uf008006.gif