Methods of Counting

The first math class.

Credit: www.smbc-comics.com/comic/a-new-method

Counting - CSc 144 v1.0 (McCann) - p. 1/37

The Pigeonhole Principle (1 / 2)

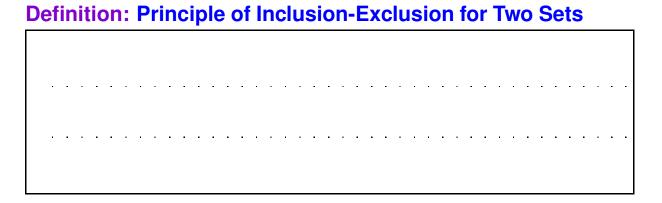
(a.k.a. The Dirichlet Drawer Principle)

Example:

Definit	ion: P	igeonh	ole Prir	nciple				
Definit	ion: F	Pigeonh	ole Priı	nciple	(w/ fun	ctions	<u> </u>	
		3					<u>, </u>	

The Pigeonhole Principle (2 / 2)

Counting - CSc 144 v.1.0 (McCann) - p. 3/37 The Multiplication Principle (1 / 2) Example(s):		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
The Multiplication Principle (1 / 2)		
		Counting – CSc 144 v1.0 (McCann) – p. 3/37
Example(s):		
	The Multiplication Principle (1 / 2	2)
		2)
		2)
		2)
		2)
Definition: Multiplication Principle (a.k.a. Product Rule)	Example(s):	
	Example(s):	

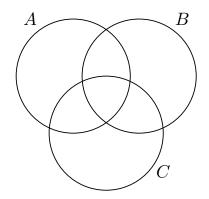

The Multiplication Principle (2 / 2)

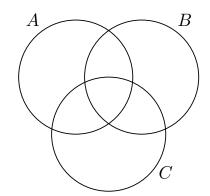
	e(s):
	Counting – CSc 144 v1.0 (McCann) – p. 5/3
$Tho \Lambda$	ddition Dying similar (4.70)
IIIE A	ddition Principle (1 / 2)
	on: Addition Principle (1 / 2)
Definition	on: Addition Principle (a.k.a. Sum Rule)
Definition	on: Addition Principle (a.k.a. Sum Rule)
Definition	on: Addition Principle (a.k.a. Sum Rule)
	on: Addition Principle (a.k.a. Sum Rule)
Definition	on: Addition Principle (a.k.a. Sum Rule)

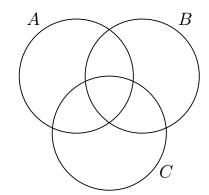
The Addition Principle (2 / 2)

Example(s):	
Counting – CSc 144 v1.0 (McCann)	– p. 7/37
The Principle of Inclusion-Exclusion (1 / 5)	
The Principle of Inclusion-Exclusion (1 / 5) A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	
A problem with the Addition Principle:	

The Principle of Inclusion-Exclusion (2 / 5)


Counting - CSc 144 v1.0 (McCann) - p. 9/37


The Principle of Inclusion-Exclusion (3 / 5)


Definition: Principle of Inclusion-Exclusion for <u>Three</u> Sets

The Principle of Inclusion-Exclusion (4 / 5)

Why so complex?

Counting - CSc 144 v1.0 (McCann) - p. 11/37

The Principle of Inclusion-Exclusion (5 / 5)

Example(s):		

Permutations (1 / 2)

Definition: Permutation		
Evernle(e):		
Example(s):		
	Counting – CSc 144 v1.0 (McCann) – p. 13/37	
Permutations (2 / 2)		
Permutations (2 / 2) Conjecture: There are $n!$ possible permut	tations of n elements.	
	tations of n elements.	
Permutations (2 / 2) Conjecture: There are n! possible permut	tations of n elements.	
	tations of n elements.	
Conjecture: There are $n!$ possible permut	tations of n elements.	
	tations of n elements.	

r-Permutations (1 / 3)

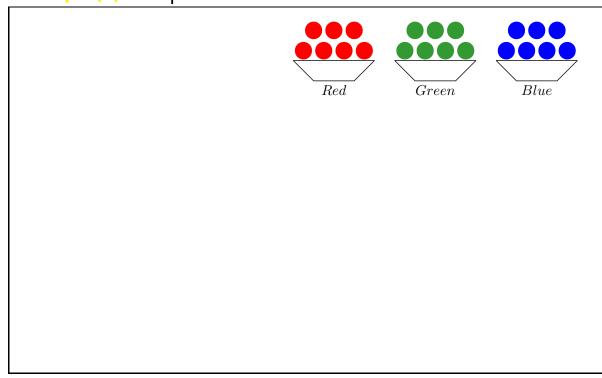
Definition: r-Permutation	
Conjecture: The number of r -permutations of n elements,	
denoted $P(n,r)$, is $n\cdot (n-1)\cdot \ldots \cdot (n-r+1)$, $r\leq n$.	
Counting – CSc 144 v1.0 (McCann	a) – p. 15/37
r-Permutations (2 / 3)	
Observation:	
Example(s):	

r-Permutations (3 / 3) **Example(s):** Counting - CSc 144 v1.0 (McCann) - p. 17/37 r-Combinations (1 / 3) **Definition:** r**-Combination** Other Notations: **Example(s):**

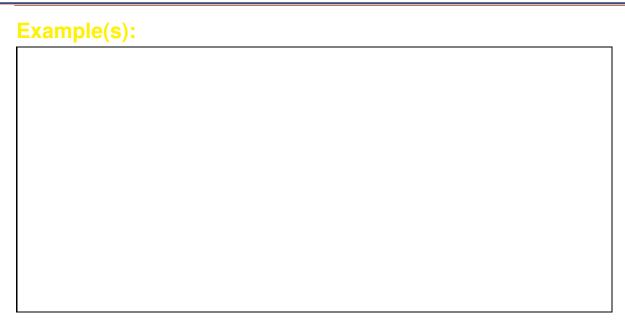
r-Combinations (2 / 3)

,	
The r -Permutation – r -Combination Connection:	
Example(s):	
Counting – CSc 144 v1.0 (McCann) – p. 19/37	,
r-Combinations (3 / 3)	
Example(s):	
•	

Repetition and Permutations


We've already seen this!	
Example(s):	

In General: When object repetition is permitted, the number of r-permutations of a set of n objects is n.


Counting - CSc 144 v1.0 (McCann) - p. 21/37

Repetition and Combinations (1 / 3)

Example(s): 'Experienced' Golf Balls

Repetition and Combinations (2 / 3)

In General: When repetition is allowed, the number of r-combinations of a set of n elements is $\binom{n+r-1}{r}=\binom{n+r-1}{n-1}$.

Counting - CSc 144 v1.0 (McCann) - p. 23/37

Repetition and Combinations (3 / 3)

A Small Extension:

Example(s):

In General: When repetition is allowed, the number of r-combinations of a set of n elements when one of each element is included in r is $\binom{r-1}{r-n} = \binom{r-1}{n-1}$.

Another View of Repetition and Combinations (1 / 2)

Consider: An integer variable can represent the c	uantity of
items selected with repetition.	
Example(s):	
C	ounting – CSc 144 v1.0 (McCann) – p. 25/37
Another View of Repetition and Combinat	ions (2 / 2)
Another View of Repetition and Combinat Example(s):	ions (2 / 2)
	ions (2 / 2)

Generalized Permutations (1 / 3)

Idea: What if some elements are indistinguisha	ble?
Example(s):	
	Counting – CSc 144 v1.0 (McCann) – p. 27/37
Generalized Permutations (2 / 3)	
What if we have indistinguishable copies of multiple elem	ents?
Example(s):	

In General: If we have n objects of t different types, and there are i_k indistinguishable objects of type k, then the number of distinct arrangements is $P(n;i_1,i_2,\ldots,i_t)=\frac{n!}{i_1!\cdot i_2!\cdot\ldots\cdot i_t!}$.

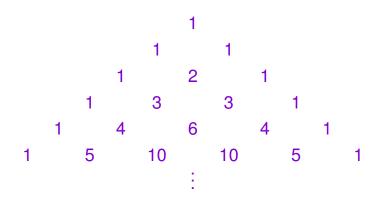
Generalized Permutations (3 / 3)

We can view $P(n;i_1,i_2,\ldots,i_t)$ in terms of combinations:

Example(s):

In General:

$$P(n; i_1, i_2, \dots, i_t) = \binom{n}{i_1} \binom{n-i_1}{i_2} \binom{n-i_1-i_2}{i_3} \cdots \binom{n-m-i_{t-1}}{i_t}$$

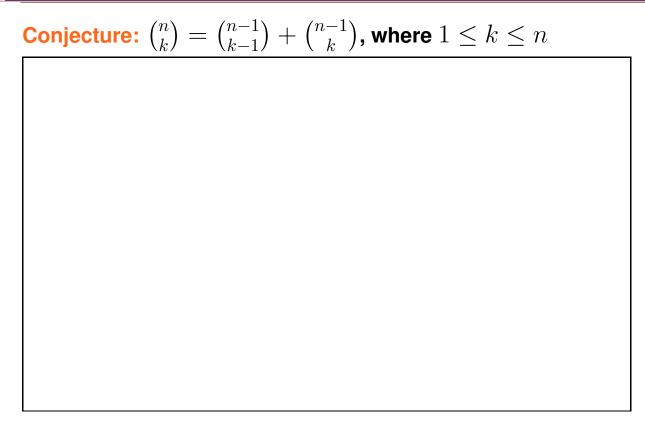

Counting - CSc 144 v1.0 (McCann) - p. 29/37

More Fun with Combinations (1 / 2)

What if we created a table of $\binom{n}{k}$ values?

More Fun with Combinations (2 / 2)

Pascal's Triangle is the centered rows of the $\binom{n}{k}$ table:

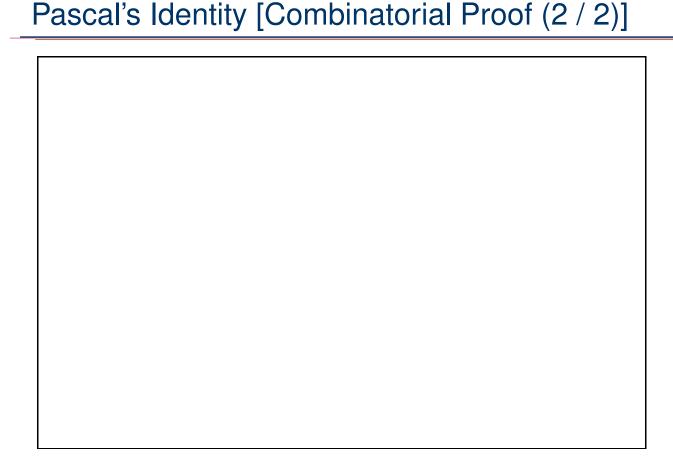


Counting - CSc 144 v1.0 (McCann) - p. 31/37

Proving that Pascal's Triange is 'Palindromic'

Conjecture: $\binom{n}{k} = \binom{n}{n-k}$, where $0 \le k \le n$

Pascal's Identity (Combinatorial Argument Example)



Counting - CSc 144 v1.0 (McCann) - p. 33/37

Pascal's Identity [Combinatorial Proof (1 / 2)]

Definition: Combinatorial Proof

Conjecture:
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
, where $1 \leq k \leq n$

Counting - CSc 144 v1.0 (McCann) - p. 35/37

The Binomial Theorem (1 / 2)

The values of Pascal's Triangle appear in numerous places.

For instance:

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = 1a+1b$$

$$(a+b)^{2} = 1a^{2} + 2ab + 1b^{2}$$

$$(a+b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + 1b^{3}$$

Generalize this, and you've got the Binomial Theorem.

The Binomial Theorem (2 / 2)

Theorem: $(a+b)^n = \sum_{k=0}^n \left[\binom{n}{k} \cdot a^{n-k} \cdot b^k \right]$	
Example(s):	

Counting - CSc 144 v1.0 (McCann) - p. 37/37