# Finite Probability 

## Probability (1 / 2)

## Definition: Probability

$\square$

- The occurrences of interest are called $\qquad$ .
- The set of possible occurrences is the $\qquad$ .
- These are finite sets, hence the term finite probability.
- The occurrence probability of an interest event:


## Probability (2 / 2)

Please note:
(a) $\forall e \in S, p(e)>0$
(b) $\sum_{e \in S} p(e)=1$

## Example(s):

## Applications of Counting to Probability (1 / 2)

1. Probability of Winning the Powerball Lottery

## Applications of Counting to Probability (2 / 2)

2. Principle of Inclusion-Exclusion

Recall: $\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|$

Example(s):

## Conditional Probability (1 / 2)

## Example(s):

## Conditional Probability (2 / 2)

Definition: Conditional Probability
$\square$

## Example(s):

## Independence of Events (1 / 3)

Recall: $p(A \mid B)=\frac{p(A \cap B)}{p(B)}$
Definition: Independent
$\square$

## Example(s):

Independence of Events (2 / 3)
Example(s):

## Independence of Events (3 / 3)

## Probabilistic Reasoning (1 / 6)

Each drawer of a $3 \times 2$ dresser holds either a red or a blue UA T-shirt. One row of drawers has two red shirts, one row has two blue, and one row has
 one of each. You open one drawer and see a red T-shirt. What is the probability that the shirt in the other drawer in the same row is also red?

## Probabilistic Reasoning (2 / 6)

One solution approach: Enumerate the possibilities. WLOG:

Dresser

| $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ |
| :---: | :---: |
| B | B |
| $\mathrm{R}_{3}$ | B |

Open Drawer Shirt Color in Containing Other Drawer?

| $\mathrm{R}_{1}$ |  |
| :---: | :--- |
| $\mathrm{R}_{2}$ |  |
| $\mathrm{R}_{3}$ |  |

## Probabilistic Reasoning (3 / 6)

A more famous, more recent, example:
"Suppose you're on a game show, and you're given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, 'Do you want to pick door No. 2?' Is it to your advantage to switch your choice?"

From "Ask Marilyn", Parade, Sept. 9, 1990.

Reference:
www.marilynvossavant.com/game-show-problem/
Care to Play?

## Probabilistic Reasoning (4 / 6)

## But . . . why? Three views:

1. Enumerate the Possibilities

## Probabilistic Reasoning (5 / 6)

2. ‘Car / Not Car’

## Probabilistic Reasoning (6 / 6)

## 3. Conditional Probability

