CSc 144 - Discrete Mathematics for Computer Science I
Spring 2023 (McCann)
http://u.arizona.edu/~mccann/classes/144

Homework \#6

(50 points)
Due Date: April 7 ${ }^{\text {th }}$, 2023, at the beginning of class

Directions

1. This is an INDIVIDUAL assignment; do your own work! Submitting answers created by computers or by other people is NOT doing your own work.
2. Start early! Getting help is much easier n days before the due date/time than it will be n hours before.
3. Write complete answers to each of the following questions, in accordance with the given directions. Create your solutions as a PDF document such that each answer is clearly separated from neighboring answers, to help the TAs easily read them. Show your work, when appropriate, for possible partial credit.
4. The questions that have section numbers are found in the Rosen text, available via D2L. Note that " (w, z) " is asking you to complete parts w and z only, not parts x and y .
5. If you have questions about any aspect of this assignment, help is available from the class staff via piazza. com and our office hours.
6. When your answers are ready to be turned in, do so on gradescope.com. Be sure to assign pages to problems after you upload your PDF. Need help? Visit https://help.gradescope.com/ and search for "Submitting an Assignment."
7. Solutions submitted more than five minutes late will cost you a late day. Submissions more than 24 hours late are worth no points.

Section 2.3: Functions:

1. (2 points) Section 2.3, 2(b,c)
2. (4 points) Section 2.3, 6(a,c)
3. (2 points) Section 2.3, 20(a). Rosen's \mathbf{N} is our \mathbb{Z}^{*}.
4. (2 points) Section 2.3, 22(b)
5. (4 points) Section 2.3, 38
6. (4 points) Section 2.3, 70(e). In case your version is fuzzy, the function is: $f(x)=\left\lceil\frac{x}{2}\right\rceil\left\lfloor\frac{x}{2}\right\rfloor$

Section 1.7: Indirect ("Contra") Proofs:
7. (12 points) Section 1.7, 20(a,b)
8. (4 points) Section 1.7, 26. We don't need a formal proof, just a convincing explanation. (But, a full proof by contradiction would be better, and good practice!)
9. (10 points) Section 1.7, 30. Construct a proof by cases, one case per direction of the biimplication. Remember that you can use different proof techniques for each case.
10. (6 points) Page 119, 38. Prove this conjecture using contraposition.

