Collected Definitions for Exam #3

This is the ‘official’ collection of need-to-know definitions for Exam #1. I can’t recall the last time I didn’t ask a definition question on an exam. To help you better prepare yourself for definition questions, I’ve assembled this list. My pledge to you: If I ask you for a definition on the exam, the term will come from this list. Note that this is not a complete list of the definitions given in class. You should know the others, too, but I won’t specifically ask you for their definitions on the exam.

Once in a while a student will express disappointment that I ask definition questions on exams. My justification is that I think it’s important for you to know what the core terms mean so that you can use them correctly and effectively. At the same time, I don’t require that you memorize the exact wording of the definitions you see here. If you provide a definition in your own words that captures all of the detail found here, without adding anything incorrect, that’s fine.

Topic 9: Functions

- A function from set X to set Y, denoted \(f : X \to Y \), is a relation from X to Y. If \((x, y) \in f \), then y is the only value returned from \(f(x) \). Further, \(f(x) \) is defined \(\forall x \in X \).

- For each of the following, let \(f : X \to Y \) be a function, and assume \(f(n) = p \).
 - X is the domain of f; Y is the codomain of f.
 - f maps X to Y.
 - p is the image of n; n is the pre-image of p.
 - The range of f is the set of all images of elements of X. (Note that the range need not equal the codomain.)

- The floor of \(n \), denoted \(\lfloor n \rfloor \), is the largest integer \(\leq n \).

- The ceiling of a value \(m \), denoted \(\lceil m \rceil \), is the smallest integer \(\geq m \).

- A function \(f : X \to Y \) is injective (a.k.a. one-to-one) if, for each \(y \in Y \), \(f(x) = y \) for at least one member of X.

- A function \(f : X \to Y \) is surjective (a.k.a. onto) if \(f \)’s range is Y (the range = the codomain).

- A bijective function (a.k.a. a one-to-one correspondence) is both injective and surjective.

- The inverse of a bijective function \(f \), denoted \(f^{-1} \), is the relation \(\{(y, x) \mid (x, y) \in f\} \).

- Let \(f : Y \to Z \) and \(g : X \to Y \). The composition of \(f \) and \(g \), denoted \(f \circ g \), is the function \(h = f(g(x)) \), where \(h : X \to Z \).

- A function \(f : X \times Y \to Z \) (or \(f(x, y) = z \)) is a binary function.

Topic 10: Properties of Integers

- Let \(i \) and \(j \) be positive integers. \(j \) is a factor of \(i \) when \(i \% j = 0 \).

- A positive integer \(p \) is prime if \(p \geq 2 \) and the only factors of \(p \) are 1 and \(p \).

- A positive integer \(p \) is composite if \(p \geq 2 \) and \(p \) is not prime.

- Let \(x \) and \(y \) be integers such that \(x \neq 0 \) and \(y \neq 0 \). The Greatest Common Divisor (GCD) of \(x \) and \(y \) is the largest integer \(i \) such that \(i \mid x \) and \(i \mid y \). That is, \(\gcd(x, y) = i \).

- If the GCD of \(a \) and \(b \) is 1, then \(a \) and \(b \) are relatively prime.

- When the members of a set of integers are all relatively prime to one another, they are pairwise relatively prime.

- Let \(x \) and \(y \) be positive integers. The Least Common Multiple (LCM) of \(x \) and \(y \) is the smallest integer \(s \) such that \(x \mid s \) and \(y \mid s \). That is, \(\text{lcm}(x, y) = s \).

(Continued ...)
Topic 11: Sequences and Strings

- A **sequence** is the ordered range of a function from a set of integers to a set \(S \).
- In an **arithmetic sequence** (a.k.a. arithmetic progression) \(a \), \(a_{n+1} - a_n \) is constant. This constant is called the common difference of the sequence.
- In a **geometric sequence** (a.k.a. geometric progression) \(g \), \(\frac{a_{n+1}}{a_n} \) is constant. This constant is called the common ratio of the sequence.
- An **increasing** (a.k.a. non-decreasing) sequence \(i \) is ordered such that \(i_n \leq i_{n+1} \).
- A **strictly increasing** sequence \(i \) is ordered such that \(i_n < i_{n+1} \).
- A **non-increasing** (a.k.a. decreasing) sequence \(i \) is ordered such that \(i_n \geq i_{n+1} \).
- A **strictly decreasing** sequence \(i \) is ordered such that \(i_n > i_{n+1} \).
- Sequence \(x \) is a **subsequence** of sequence \(y \) when the elements of \(x \) are found within \(y \) in the same relative order.
- A **string** is a contiguous finite sequence of zero or more elements drawn from a set called the **alphabet**.
- A set is **finite** if there exists a bijective mapping between it and a set of cardinality \(n, n \in \mathbb{Z}^+ \).
- A set is **countably infinite** (a.k.a. denumerably infinite) if there exists a bijective mapping between the set and either \(\mathbb{Z}^+ \) or \(\mathbb{Z}^* \).
- A set is **countable** if it is either finite or countably infinite. If neither, the set is **uncountable**.

Topic 12: Induction

- The First Principle of Mathematical Induction: if (i) \(P(a) \) is true for the starting point \(a \in \mathbb{Z}^+ \), **and** (ii) if \(P(k) \) is true for any \(k \in \mathbb{Z}^+ \), then \(P(k+1) \) is true, **then** \(P(n) \) is true for all \(n \in \mathbb{Z}^+ \), \(n \geq a \).
- The Second Principle of Mathematical Induction: if (i) \(P(a) \) is true for the starting point \(a \in \mathbb{Z}^+ \), **and** (ii) (for any \(k \in \mathbb{Z}^+ \)) if \(P(j) \) is true for any \(j \in \mathbb{Z}^+ \) such that \(a \leq j \leq k \), then \(P(k+1) \) is true, **then** \(P(n) \) is true for all \(n \in \mathbb{Z}^+ \), \(n \geq a \).

Topic 13: Counting

- I present two definitions of the (Generalized) **Pigeonhole Principle**; learn either one (or both!):
 (a) if \(n \) items are placed in \(k \) boxes, then at least one box contains at least \(\lceil \frac{n}{k} \rceil \) items.
 (b) Let \(f : X \rightarrow Y \), where \(|X| = n \) and \(|Y| = k \), and let \(m = \lceil \frac{n}{k} \rceil \). There are at least \(m \) values \((a_1, a_2, \ldots, a_m)\) such that \(f(a_1) = f(a_2) = \ldots = f(a_m) \).

- The **Multiplication Principle** (a.k.a. the **Product Rule**): If there are \(s \) steps in an activity, with \(n_1 \) ways of accomplishing the first step, \(n_2 \) of accomplishing the second, etc., and \(n_s \) ways of accomplishing the last step, then there are \(n_1 \cdot n_2 \cdot \ldots \cdot n_s \) ways to complete all \(s \) steps.

- The **Addition Principle** (a.k.a. the **Sum Rule**): If there are \(t \) tasks, with \(n_1 \) ways of accomplishing the first, \(n_2 \) ways of accomplishing the second, etc., and \(n_t \) ways of accomplishing the last, then there are \(n_1 + n_2 + \ldots + n_t \) ways to complete one of these tasks, assuming that no two tasks interfere with one another.

- The **Principle of Inclusion-Exclusion for Two Sets** says that the cardinality of the union of sets \(M \) and \(N \) is the sum of their individual cardinalities excluding the cardinality of their intersection. That is:
 \[|M \cup N| = |M| + |N| - |M \cap N| \]

- The **Principle of Inclusion-Exclusion for Three Sets** says that the cardinality of the union of sets \(M, N, \) and \(O \) is the sum of their individual cardinalities excluding the sum of the cardinalities of their pairwise intersections and including the cardinality of their intersection. That is:
 \[|M \cup N \cup O| = |M| + |N| + |O| - (|M \cap N| + |M \cap O| + |N \cap O|) + |M \cap N \cap O| \]