Collected Definitions for Exam #3

This is the ‘official’ collection of need-to-know definitions for Exam #3. My pledge to you: If I ask you for a definition on the exam, the term will come from this list. Note that this is not a complete list of the definitions given in class. You should know the others, too, but I won’t specifically ask you for their definitions on the exam.

Topic 8: Relations

- The **inverse** of a relation \(R \), denoted \(R^{-1} \), contains all of the ordered pairs of \(R \) with their components exchanged. (That is, \(R^{-1} = \{(b, a) \mid (a, b) \in R\} \).
- Let \(G \) be a relation from set \(A \) to set \(B \), and let \(F \) be a relation from \(B \) to set \(C \). The **composite** of \(F \) and \(G \), denoted \(F \circ G \), is the relation of ordered pairs \((a, c), a \in A, c \in C \), such that \(b \in B, (a, b) \in G \), and \((b, c) \in F \).
- A relation \(R \) on set \(A \) is an **equivalence relation** if it is reflexive, symmetric, and transitive.
- A relation \(R \) on set \(A \) is a (reflexive/weak) **partial order** if it is reflexive, antisymmetric, and transitive.
- A relation \(R \) on set \(A \) is **irreflexive** if, for all members of \(A \), \((a, a) \notin R \).
- A relation \(R \) on set \(A \) is an (irreflexive/strict) **partial order** if it is irreflexive, antisymmetric, and transitive.
- Let \(R \) be a weak partial order on set \(A \). \(a \) and \(b \) are said to be **comparable** if \(a, b \in A \) and either \(a \preceq b \) or \(b \preceq a \) (that is, \((a, b) \in R \) or \((b, a) \in R \)).
- A weak partially-ordered relation \(R \) on set \(A \) is a **total order** if every pair of elements \(a, b \in A \) are comparable.

Topic 9: Functions

- A **function** from set \(X \) to set \(Y \), denoted \(f : X \to Y \), is a relation from \(X \) to \(Y \) such that \(f(x) \) is defined \(\forall x \in X \) and, for each \(x \in X \), there is exactly one \((x, y) \in f \).
- For each of the following, let \(f : X \to Y \) be a function, and assume \(f(n) = p \).
 - \(X \) is the **domain** of \(f \); \(Y \) is the **codomain** of \(f \).
 - \(f \) maps \(X \) to \(Y \).
 - \(p \) is the **image** of \(n \); \(n \) is the **pre-image** of \(p \).
 - The **range** of \(f \) is the set of all images of elements of \(X \). (Note that the range need not equal the codomain.)
- The **floor** of \(n \), denoted \(\lfloor n \rfloor \), is the largest integer \(\leq n \).
- The **ceiling** of a value \(m \), denoted \(\lceil m \rceil \), is the smallest integer \(\geq m \).
- A function \(f : X \to Y \) is **injective** (a.k.a. **one-to-one** if, for each \(y \in Y \), \(f(x) = y \) for at most one member of \(X \).
- A function \(f : X \to Y \) is **surjective** (a.k.a. **onto**) if \(f \)’s range is \(Y \) (the range = the codomain).
- A **bijective** function (a.k.a. a **one-to-one correspondence**) is both injective and surjective.
- The **inverse** of a bijective function \(f \), denoted \(f^{-1} \), is the relation \(\{(y, x) \mid (x, y) \in f\} \).
- Let \(f : Y \to Z \) and \(g : X \to Y \). The **composition** of \(f \) and \(g \), denoted \(f \circ g \), is the function \(h = f(g(x)) \), where \(h : X \to Z \).
- A function \(f : X \times Y \to Z \) (or \(f(x, y) = z \)) is a **binary** function.

(Continued . . .)
Topic 10: Properties of Integers

- Let \(i \) and \(j \) be positive integers. \(j \) is a factor of \(i \) when \(i \% j = 0 \).
- A positive integer \(p \) is prime if \(p \geq 2 \) and the only factors of \(p \) are 1 and \(p \).
- A positive integer \(p \) is composite if \(p \geq 2 \) and \(p \) is not prime.
- Let \(x \) and \(y \) be integers such that \(x \neq 0 \) and \(y \neq 0 \). The Greatest Common Divisor (GCD) of \(x \) and \(y \) is the largest integer \(i \) such that \(i \mid x \) and \(i \mid y \). That is, \(\gcd(x,y) = i \).
- If the GCD of \(a \) and \(b \) is 1, then \(a \) and \(b \) are relatively prime.
- When the members of a set of integers are all relatively prime to one another, they are pairwise relatively prime.
- Let \(x \) and \(y \) be positive integers. The Least Common Multiple (LCM) of \(x \) and \(y \) is the smallest integer \(s \) such that \(x \mid s \) and \(y \mid s \). That is, \(\text{lcm}(x,y) = s \).

Topic 11: Sequences and Strings

- A sequence is the ordered range of a function from a set of integers to a set \(S \).
- In an arithmetic sequence (a.k.a. arithmetic progression) \(a, a_n+1-a_n \) is constant. This constant is called the common difference of the sequence.
- In a geometric sequence (a.k.a. geometric progression) \(g, \frac{g_{n+1}}{g_n} \) is constant. This constant is called the common ratio of the sequence.
- An increasing (a.k.a. non-decreasing) sequence \(i \) is ordered such that \(i_n \leq i_{n+1} \).
- A strictly increasing sequence \(i \) is ordered such that \(i_n < i_{n+1} \).
- A non-increasing (a.k.a. decreasing) sequence \(i \) is ordered such that \(i_n \geq i_{n+1} \).
- A strictly decreasing sequence \(i \) is ordered such that \(i_n > i_{n+1} \).
- Sequence \(x \) is a subsequence of sequence \(y \) when the elements of \(x \) are found within \(y \) in the same relative order.
- A string is a contiguous finite sequence of zero or more elements drawn from a set called the alphabet.
- A set is finite if there exists a bijective mapping between it and a set of cardinality \(n, n \in \mathbb{Z}^* \).
- A set is countably infinite (a.k.a. denumerably infinite) if there exists a bijective mapping between the set and either \(\mathbb{Z}^* \) or \(\mathbb{Z}^+ \).
- A set is countable if it is either finite or countably infinite. If neither, the set is uncountable.

Topic 12: Induction

- The First Principle of Mathematical Induction: if (i) \(P(a) \) is true for the starting point \(a \in \mathbb{Z}^+ \), and (ii) if \(P(k) \) is true for any \(k \in \mathbb{Z}^+ \), then \(P(k+1) \) is true, then \(P(n) \) is true for all \(n \in \mathbb{Z}^+, n \geq a \).
- The Second Principle of Mathematical Induction: if (i) \(P(a) \) is true for the starting point \(a \in \mathbb{Z}^+ \), and (ii) (for any \(k \in \mathbb{Z}^+ \)) if \(P(j) \) is true for any \(j \in \mathbb{Z}^+ \) such that \(a \leq j \leq k \), then \(P(k+1) \) is true, then \(P(n) \) is true for all \(n \in \mathbb{Z}^+, n \geq a \).