Handful O’ Definitions (1 / 2)

Definition: Conjecture

Definition: Theorem

Definition: Proof
Why do People Fear Proofs?

1. **Proofs don’t come from an assembly line.**
 - Need knowledge, persistence, and creativity

2. **Creating proofs seems like magic.**
 - But they are systematic in many ways

3. **Proofs are hard to read and understand.**
 - Only if the writer makes them so

4. **Institutionalized Fear.**
 - Many teachers avoid them in classes
Constructing a proof? Remember:

1. There are several proof techniques for a reason.
 ▶ One may be easier to use than the others

2. Knowledge of mathematics is important.
 ▶ Remember our Math Review?

3. There are “tricks” to know.
 ▶ Ex: Dividing an even # in half leaves no remainder

4. Practice helps . . . a lot!
 ▶ Just as it does for most everything else

5. Dead ends are expected.
 ▶ Proofs in books are the final, polished versions

Types Of Proof In This Class

1. Direct Proof
 ▶ The most common variety

2. Proof by Contraposition
 ▶ Like Direct, but with a twist

3. Proof by Contradiction
 ▶ A dark road on a foggy night

4. Proof by Mathematical Induction
 ▶ Wait for it . . .
Our First Conjecture

Conjecture: If \(n \) is even, then \(n^2 \) is also even, \(n \in \mathbb{Z} \).
Proof-Writing Miscellanea

- Remember: A conjecture isn’t a theorem until proven.
- Don’t lose sight of your destination.
- When writing proofs in this class:
 1. Always start with “Proof (style):”
 2. Stating your allowed assumptions can help.
 3. Define all introduced variables.
 4. End proofs with “Therefore,” and the conjecture.

[Outside of this class: “Q.E.D.” (quod erat demonstrandum, Latin for “this was to be demonstrated.”)]

A Conjecture About Inequalities

Conjecture: If $0 < a < b$, then $a^2 < b^2$, $a, b \in \mathbb{R}$.
“Proof By Cases”

Question: How would you prove that \(\forall x \ C(x) \) is true, where \(x \in \{6, 28, 496\} \)?

A Direct Proof Employing Cases

Conjecture: \(s \rightarrow r \equiv \neg r \rightarrow \neg s \).

Proof (direct): Consider all possible combinations of values of \(r \) and \(s \):

<table>
<thead>
<tr>
<th>(r)</th>
<th>(s)</th>
<th>(s \rightarrow r)</th>
<th>(\neg r \rightarrow \neg s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Therefore, \(s \rightarrow r \equiv \neg r \rightarrow \neg s \).

(Yes, this truth table is a direct proof by cases.)
A More Interesting Direct Proof With Cases

Conjecture: $x^2 \% 4 \in \{0, 1\}, \ x \in \mathbb{Z}$.

Poor Arguments \rightarrow Poor Proofs (1 / 2)

Conjecture: $1 < 0$.

Proof or Goof?:

Consider x such that $0 < x < 1$. Take the base–10 logarithm of both sides of $x < 1$: $\log_{10} x < \log_{10} 1$. By definition, $\log_{10} 1 = 0$. Divide both sides by $\log_{10} x$:

$\frac{\log_{10} x}{\log_{10} 1} < \frac{0}{\log_{10} x}$, which reduces to $1 < 0$.

Therefore, $1 < 0$.
Conjecture: For all $n \in \mathbb{Z}^{odd}$, $(n^2 - 1) \mod 4 = 0$.

Proof or Goof?:
Let $x = 1$. $1^2 - 1 = 0$. $0 \mod 4 = 0$. Let $x = 3$. $3^2 - 1 = 8$. $8 \mod 4 = 0$. Let $x = 5$. $5^2 - 1 = 24$. $24 \mod 4 = 0$. This shows no sign of failing to give a result of 0.

Therefore, for all $n \in \mathbb{Z}^{odd}$, $(n^2 - 1) \mod 4 = 0$.

Proof by Contraposition

(a.k.a. Proof of the Contrapositive)
Example #1: Proof by Contraposition

Conjecture: If \(ac \leq bc \), then \(c \leq 0 \), when \(a > b \).

Example #2: Proof by Contraposition

Conjecture: If \(n^2 \) is even, then \(n \) is even.
Proof by Contradiction

(a.k.a. Reductio ad Absurdum)

Recall the Law of Implication: \(p \rightarrow q \equiv \neg p \lor q \)

Example #1: Proof by Contradiction

Conjecture: If \(3n + 2 \) is odd, then \(n \) is odd.
Example #2: Proof by Contradiction (1 / 2)

Conjecture: The sum of the squares of two odd integers is never a perfect square. (Or: If $n = a^2 + b^2$, then n is not a perfect square, where $a, b \in \mathbb{Z}_{odd}$.)
How To Prove Biconditional Expressions

(i.e., Conjectures Of The Form \(p \leftrightarrow q \))

Example(s):

Disproving Conjectures

Typical approaches:

1. Prove that the conjecture’s negation is true.
2. Find a counter-example. (Very commonly used!)

Example(s):