Topic 5:

Proofs of $p \rightarrow q$

Handful O’ Definitions (1 / 2)

Definition: Conjecture

Definition: Theorem

Definition: Proof
Handful O’ Definitions (2 / 2)

Definition: Lemma

Definition: Corollary

Example(s):

Why do People Fear Proofs?

1. **Proofs don’t come from an assembly line.**
 - Need knowledge, persistence, and creativity

2. **Creating proofs seems like magic.**
 - But they are systematic in many ways

3. **Proofs are hard to read and understand.**
 - Only if the writer makes them so

4. **Institutionalized Fear.**
 - Many teachers avoid them in classes
Constructing a proof? Remember:

1. There are several proof techniques for a reason.
 ► One may be easier to use than the others

2. Knowledge of mathematics is important.
 ► Remember our Math Review?

3. There are “tricks” to know.
 ► Ex: Dividing an even # in half leaves no remainder

4. Practice helps . . . a lot!
 ► Just as it does for most everything else

5. Dead ends are expected.
 ► Proofs in books are the final, polished versions

Types Of Proof In This Class

1. Direct Proof
 ► The most common variety

2. Proof by Contraposition
 ► Like Direct, but with a twist

3. Proof by Contradiction
 ► A dark road on a foggy night

4. Proof by Mathematical Induction
 ► Wait for it . . .
Our First Conjecture

Conjecture: If \(n \) is even, then \(n^2 \) is also even, \(n \in \mathbb{Z} \).
Proof-Writing Miscellanea

• Remember: A conjecture isn’t a theorem until proven.

• Don’t lose sight of your destination.

• When writing proofs in this class:
 1. Always start with “Proof (style):”
 2. Stating your allowed assumptions can help.
 3. Define all introduced variables.
 4. End proofs with “Therefore,” and the conjecture.

[Outside of this class: “Q.E.D.” (*quod erat demonstrandum*,
Latin for “this was to be demonstrated.”)]

A Conjecture About Inequalities

Conjecture: If $0 < a < b$, then $a^2 < b^2$, $a, b \in \mathbb{R}$.
Question: How would you prove that $\forall x \, C(x)$ is true, where $x \in \{6, 28, 496\}$?

A Direct Proof Employing Cases

Conjecture: $s \rightarrow r \equiv \lnot r \rightarrow \lnot s$

Proof (direct): Consider all possible combinations of values of r and s:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>s</td>
<td>$s \rightarrow r$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Case 1: $T \ T \ T \ T$
Case 2: $T \ F \ T \ T$
Case 3: $F \ T \ F \ F$
Case 4: $F \ F \ T \ T$

Therefore, $s \rightarrow r \equiv \lnot r \rightarrow \lnot s$.

(Yes, this truth table is a direct proof by cases.)
A More Interesting Direct Proof With Cases

Conjecture: \(x^2 \% 4 \in \{0, 1\}, \ x \in \mathbb{Z} \).

Poor Arguments \(\rightarrow\) Poor Proofs (1 / 2)

Conjecture: \(1 < 0 \).

Proof or Goof?:

Consider \(x \) such that \(0 < x < 1 \). Take the base–10 logarithm of both sides of \(x < 1 \): \(\log_{10} x < \log_{10} 1 \). By definition, \(\log_{10} 1 = 0 \). Divide both sides by \(\log_{10} x \):

\[
\frac{\log_{10} x}{\log_{10} x} < \frac{0}{\log_{10} x},
\]

which reduces to \(1 < 0 \).

Therefore, \(1 < 0 \).
Poor Arguments —> Poor Proofs (2 / 2)

Conjecture: For all \(n \in \mathbb{Z}_{\text{odd}} \), \((n^2 - 1) \mod 4 = 0 \).

Proof or Goof?:

Let \(x = 1 \). \(1^2 - 1 = 0 \). \(0 \mod 4 = 0 \). Let \(x = 3 \). \(3^2 - 1 = 8 \). \(8 \mod 4 = 0 \). Let \(x = 5 \). \(5^2 - 1 = 24 \). \(24 \mod 4 = 0 \). This shows no sign of failing to give a result of 0.

Therefore, for all \(n \in \mathbb{Z}_{\text{odd}} \), \((n^2 - 1) \mod 4 = 0 \).

Proof by Contraposition

(a.k.a. Proof of the Contrapositive)
Example #1: Proof by Contraposition

Conjecture: If $ac \leq bc$, then $c \leq 0$, when $a > b$.

Example #2: Proof by Contraposition

Conjecture: If n^2 is even, then n is even.
Proof by Contradiction

(a.k.a. Reductio ad Absurdum)

Recall the Law of Implication: \(p \rightarrow q \equiv \neg p \lor q \)

Example #1: Proof by Contradiction

Conjecture: If \(7n - 4 \) is odd, then \(n \) is odd.
Example #2: Proof by Contradiction (1 / 2)

Conjecture: The sum of the squares of two odd integers is never a perfect square. (Or: If $n = a^2 + b^2$, then n is not a perfect square, where $a, b \in \mathbb{Z}^{\text{odd}}$.)
How To Prove Biconditional Expressions

(i.e., Conjectures Of The Form $p \iff q$)

Example(s):

Disproving Conjectures

Typical approaches:

1. Prove that the conjecture’s negation is true.
2. Find a counter-example. (Very commonly used!)

Example(s):