Why Are We Studying Matrices?

Matrices have plenty of uses in Computer Science. E.g.:

- Representation . . .
 - ...of the graph data structure (see CSc 345)
 - ...of functions and relations (see Topics 8 and 9)
- Affine transformations in Computer Graphics
Definition: Matrix

Notation:

Matrix Fundamentals (2 / 3)

Definition: Square Matrices

Definition: Matrix Equality
Matrix Fundamentals (3 / 3)

Definition: Transposition

Definition: Matrix Symmetry

Example(s):

Matrix Operations (1 / 5)

1. Matrix Addition

Definition: Matrix Addition (a.k.a. Matrix Sum)

Example(s):
2. Scalar Multiplication

Definition: Scalar

Definition: Scalar Multiplication

Example(s):

3. Matrix Multiplication

Definition: Matrix Multiplication (a.k.a. Matrix Product)

Identity Matrices

Remember the concept of Multiplicative Identity?

Definition: Identity Matrices

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\]

Matrix Powers

Definition: \(n^{th}\) Matrix Power

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\]

Example(s):
Example: Affine Transformations (1 / 3)

Used to ‘move’ objects in computer graphics.

Background:

Example: Affine Transformations (2 / 3)

Task:

```
0 2 4
2
4
⇒
0 2 4
2
4
```

Matrices – CSc 245 v1.1 (McCann) – p. 13/18

Matrices – CSc 245 v1.1 (McCann) – p. 14/18
Zero-One Matrices (1 / 3)

Three Operations:

1. ‘Join’:

2. ‘Meet’:

Example(s):
Zero-One Matrices (2 / 3)

3. Logical Matrix Product (a.k.a. Boolean Product):

Example(s):

\[
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
\end{array}
\]

Zero-One Matrices (3 / 3)

Definition: \(r^{th} \) Logical Matrix Power (a.k.a. Boolean Power)

\[
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
\end{array}
\]