Sequences and Strings

Sequences

Definition: **Sequence** [1st Attempt]

Notation:

Example(s):
Rules

Recall:

\[\sum_{i=1}^{n} 2i \]

Example(s):

Two Notations for Infinite Sequences:

Sequences and Functions

Definition: Sequence [Final Version]

Example(s):
Arithmetic and Geometric Sequences

Definition: Arithmetic Sequence (a.k.a. Arithmetic Progression)

Definition: Geometric Sequence (a.k.a. Geometric Progression)

Example(s):

Arithmetic Series

The sum of the terms of an arithmetic sequence (a.k.a. arithmetic series):

\[s_n = a_1 + \ldots + a_n = \frac{1}{2} n (a_1 + a_n) \]

Here’s why: First, note that \(a_n = a_1 + (n - 1)d \).

Next, here are two expressions for \(s_n \):

\[s_n = a_1 + (a_1 + d) + (a_1 + 2d) + \ldots + (a_1 + (n - 1)d) \]
\[s_n = (a_n - (n - 1)d) + (a_n - (n - 2)d) + \ldots + (a_n - d) + a_n \]

Sum these expressions, and the \(d \) terms cancel, leaving:

\[2s_n = na_1 + na_n, \text{ or } s_n = \frac{1}{2} n (a_1 + a_n). \]
Increasing Sequences

Definition: Increasing Sequence

Definition: Non-Decreasing Sequence

Definition: Strictly Increasing Sequence

Decreasing Sequences

Definition: Decreasing Sequence

Definition: Non-Increasing Sequence

Definition: Strictly Decreasing Sequence
Examples: Increasing/Decreasing Sequences

Subsequences

Definition: Subsequence

Example(s):
Need to Identify a Sequence?

A great resource for sequences:

The Online Encyclopedia of Integer Sequences

(http://oeis.org/)

Example(s):

Strings (1 / 2)

Strings (1 / 2) Somewhat beyond the programming language kind . . .

Definition: String

Example(s):
Strings (2 / 2)

Notation:

- Lambda (λ) represents the empty (null) string
- xy means strings x and y are concatenated
- Superscripts denote repetition of concatenation
- $|x|$ represents the length of string x
- A^* is the set of strings that can be formed using elements of an alphabet A.
 - A^* is an infinite set
 - $\lambda \in A^*$

Set Cardinality Revisited (1 / 5)

An observation about set cardinality:

Definition: Finite
Set Cardinality Revisited (2 / 5)

Definition: Countably Infinite (a.k.a. Denumerably Infinite)

Definition: Countable

Set Cardinality Revisited (3 / 5)

Example(s):

Sequences & Strings – CSc 245 v1.1 (McCann) – p. 16
Set Cardinality Revisited (4 / 5)

Question: Are the positive rational numbers countable?

Set Cardinality Revisited (5 / 5)

Conjecture: A pairing function for \mathbb{R} cannot exist.
Background: Elephant jokes became popular form of absurdist humor in the U.S. in the 1960s. For example:

Q: How many elephants can fit in a Jeep?
A: Four – Two in the front and two in the back.

Q: How many bison can fit in a Jeep?
A: None – it’s full of elephants.

Q: How do you know when there are two elephants in your closet?
A: You hear giggling when the door is closed.

Q: How do you know when there are three elephants in your closet?
A: You can’t close the door.

Q: How do you know when there are four elephants in your closet?
A: There’s an empty Jeep in the driveway.

http://www.userfriendly.org/cartoons/archives/05jun/uf008006.gif