Topic 13: Methods of Counting

The Pigeonhole Principle (1 / 2) (a.k.a. The Dirichlet Drawer Principle)

Example:

Definition: Pigeonhole Principle

Definition: Pigeonhole Principle (w/ functions)
The Pigeonhole Principle (2 / 2)

Example(s):

The Multiplication Principle (1 / 2)

Example(s):

Definition: Multiplication Principle (a.k.a. Product Rule)
The Multiplication Principle (2 / 2)

Example(s):

The Addition Principle (1 / 2)

Definition: *Addition Principle (a.k.a. Sum Rule)*

Example(s):
The Addition Principle (2 / 2)

Example(s):

The Principle of Inclusion-Exclusion (1 / 5)

A problem with the Addition Principle:

Example(s):
The Principle of Inclusion-Exclusion (2 / 5)

Definition: Principle of Inclusion-Exclusion for Two Sets

\[
|M \cup N| = |M| + |N| - |M \cap N|
\]

The Principle of Inclusion-Exclusion (3 / 5)

Definition: Principle of Inclusion-Exclusion for Three Sets

The cardinality of the union of sets \(M, N, \) and \(O \) is the sum of their individual cardinalities excluding the sum of the cardinalities of their pairwise intersections but including the cardinality of their intersection.

That is:

\[
|M \cup N \cup O| = |M| + |N| + |O| - (|M \cap N| + |M \cap O| + |N \cap O|) + |M \cap N \cap O|.
\]
The Principle of Inclusion-Exclusion (4 / 5)

Why so complex?

The Principle of Inclusion-Exclusion (5 / 5)

Example(s):
Permutations (1 / 2)

Definition: Permutation

Example(s):

Permutations (2 / 2)

Conjecture: There are \(n! \) possible permutations of \(n \) elements.
Definition: r-Permutation

Conjecture: The number of r-permutations of n elements, denoted $P(n, r)$, is $n \cdot (n - 1) \cdot \ldots \cdot (n - r + 1)$, $r \leq n$.

Observation:

Example(s):
r-Permutations (3 / 3)

Example(s):

r-Combinations (1 / 3)

Definition: *r-Combination*

Other Notations:

Example(s):
The r-Permutation – r-Combination Connection:

Example(s):

Counting – CSc 245 v1.1 (McCann) – p. 19

Example(s):

Counting – CSc 245 v1.1 (McCann) – p. 20
Repetition and Permutations

We've already seen this!

Example(s):

In General: When object repetition is permitted, the number of r-permutations of a set of n objects is n^r.

Repetition and Combinations (1 / 3)

Example(s): ‘Experienced’ Golf Balls

Red

Green

Blue
Repetition and Combinations (2 / 3)

Example(s):

In General: When repetition is allowed, the number of r–combinations of a set of n elements is \(\binom{n+r-1}{r} = \binom{n+r-1}{n-1} \).

Repetition and Combinations (3 / 3)

A Small Extension:

Example(s):

In General: When repetition is allowed, the number of r–combinations of a set of n elements when one of each element is included in r is \(\binom{r-1}{r-n} = \binom{r-1}{n-1} \).
Another View of Repetition and Combinations (1 / 2)

Consider: An integer variable can represent the quantity of items selected with repetition.

Example(s):

Another View of Repetition and Combinations (2 / 2)

Example(s):
Generalized Permutations (1 / 3)

Idea: What if some elements are indistinguishable?

Example(s):

Generalized Permutations (2 / 3)

What if we have indistinguishable copies of multiple elements?

Example(s):

In General: If we have \(n \) objects of \(t \) different types, and there are \(i_k \) indistinguishable objects of type \(k \), then the number of distinct arrangements is

\[
P(n; i_1, i_2, \ldots, i_t) = \frac{n!}{i_1!i_2!\ldots i_t!}.
\]
Generalized Permutations (3 / 3)

We can view $P(n; i_1, i_2, \ldots, i_t)$ in terms of combinations:

Example(s):

In General:

$$P(n; i_1, i_2, \ldots, i_t) = \binom{n}{i_1} \binom{n-i_1}{i_2} \binom{n-i_1-i_2}{i_3} \cdots \binom{n-\ldots-i_{t-1}}{i_t}$$

More Fun with Combinations (1 / 2)

What if we created a table of $\binom{n}{k}$ values?

$$
\begin{array}{cccccc}
 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
0 & & & & & & \\
1 & & & & & & \\
2 & & & & & & \\
3 & & & & & & \\
4 & & & & & & \\
5 & & & & & & \\
\end{array}
$$
Pascal’s Triangle is the centered rows of the \(\binom{n}{k} \) table:

\[
\begin{array}{cccccc}
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
\vdots
\end{array}
\]

Proving that Pascal’s Triangle is ‘Palindromic’

Conjecture: \(\binom{n}{k} = \binom{n}{n-k} \), where \(0 \leq k \leq n \)
Pascal’s Identity (Combinatorial Argument Example)

Conjecture: \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \), where \(1 \leq k \leq n \)

Pascal’s Identity [Combinatorial Proof (1 / 2)]

Definition: Combinatorial Proof

Conjecture: \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \), where \(1 \leq k \leq n \)
The values of Pascal’s Triangle appear in numerous places. For instance:

\[(a + b)^0 = 1\]

\[(a + b)^1 = 1a + 1b\]

\[(a + b)^2 = 1a^2 + 2ab + 1b^2\]

\[(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3\]

Generalize this, and you’ve got the Binomial Theorem.
The Binomial Theorem (2 / 2)

Theorem: \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} \cdot a^{n-k} \cdot b^k\)

Example(s):