Definition: Algorithm

Example(s):
The Framework

1. ________ — means that the solution can be described by an algorithm
 (a) ________ — the algorithm is efficient
 (b) ________ — no efficient solution algorithm is known

2. ________ — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Algorithm Characteristics (2 / 2)

4. **Definiteness** —

5. **Correctness** —

6. **Finiteness** —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Base 10 value to be converted</td>
</tr>
<tr>
<td>base</td>
<td>Destination number system</td>
</tr>
<tr>
<td>Output</td>
<td>digit()</td>
</tr>
<tr>
<td></td>
<td>digit(0) holds LSD of result</td>
</tr>
</tbody>
</table>

```
quotient <-- n
i <-- 0
while quotient does not equal 0:
    digit(i) <-- quotient modulo base
    quotient <-- the floor of quotient/base
    increment i by 1
end while
```

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate $f(x) = 2x^3 - 4x^2 + 3x + 6$?
Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- x Value used to evaluate the polynomial
- n Largest exponent
- $a(0) \ldots a(n)$ Coefficients of $x^0 \ldots x^n$

OUTPUT:
- result Evaluation of the polynomial

```
result <-- a(n)
index <-- n - 1
while index >= 0:
    result <-- $x \times$ result + $a(index)$
    decrement index by 1
end while
output result
```

Recursive Definitions (1 / 2)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The ________________ determines how trivial cases are to be handled.

(b) The ________________ describes complex problem instances in terms of simpler instances

(c) The ________________ provides bounds on the definition
Recursive Definitions (2 / 2)

Example(s):

Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Definition: Factorial

The factorial of \(n \in \mathbb{Z}^* \), denoted \(n! \), is the product of all integers 1 through \(n \), where \(0! = 1 \).

An iterative factorial algorithm is easy to create:

```plaintext
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1 \\
4! = 4 \cdot 3!
\]

But what are the Basis, Inductive, and Extremal clauses?
Recursive pseudocode algorithm:

```
subprogram factorial ( given: n ) returns: n!
    if n is 0
        return 1
    else
        answer <-- n * factorial(n-1)
        return answer
    endif
end subprogram
```

Example: Factorials (3 / 3)

Can We Prove Our Algorithm? (1 / 2)

Conjecture: \(\text{factorial}(n) \) returns \(n! \).
Another Structural Induction Proof (1 / 4)

Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The n^{th} term of the Fibonacci Sequence is the sum of terms $n = 1$ and $n = 2$; where $F(0) = 0$ and $F(1) = 1$.

$F = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$ (A000045)

Recursively generating terms of the sequence is easy …

```
subprogram fibonacci ( given: n ) returns: n-th term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

...but inefficient!

Consider this tree of invocations resulting from \texttt{fibonacci(5)}:

\[
\begin{align*}
&f(5) \\
&\quad \downarrow \quad \downarrow \\
&f(4) \quad f(3) \\
&\quad \downarrow \quad \downarrow \\
&f(3) \quad f(2) \\
&\quad \downarrow \quad \downarrow \\
&f(2) \quad f(1) \\
&\quad \downarrow \quad \downarrow \\
&f(1) \quad f(0) \\
&\quad \downarrow \quad \downarrow \\
&f(1) \quad f(0)
\end{align*}
\]

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Example: Euclidean Algorithm for GCDs

Theorem: $\text{GCD}(a,b) = \text{GCD}(b,a \mod b)$

Recursive pseudocode algorithm:

```
subprogram GCD (given: a, b) returns: gcd(a, b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a % b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

Let $\text{oddsum}(\text{term})$ represent the sum of $o(1)$ through $o(\text{term})$.

Base: $\text{oddsum}(1) = 1$

General:

$$\text{oddsum}(\text{term}) = \text{oddsum}(\text{term}-1) + 2\times\text{term} - 1$$
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

```
subprogram oddsum (given: term)
    returns: sum from 1 through term of (2i-1)
    if term is 1, return 1
    otherwise
        answer <-- oddsum(term-1) + 2*term - 1
        return answer
    end if
end subprogram
```

Proving oddsum () (1 / 2)

Conjecture: oddsum(t) produces \(\sum_{i=1}^{t} (2i - 1), \forall t \geq 1\)

Proof (by structural induction):

Basis: At \(t = 1\), the algorithm returns 1, and \(\sum_{i=1}^{1} (2i - 1) = 1\). OK!

Inductive: If oddsum(t) returns \(\sum_{i=1}^{t} (2i - 1)\), then oddsum(t + 1) returns \(\sum_{i=1}^{t+1} (2i - 1)\).

(Continues …)
Proving $\text{oddsum}(\cdot)$ (2 / 2)

When given $t + 1$, \text{oddsum}(\cdot) returns

$$\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).$$

By the Inductive Hypothesis, $\text{oddsum}(t) = \sum_{i=1}^{t} (2i - 1)$.

Substituting, $\text{oddsum}(t + 1)$ returns $\sum_{i=1}^{t} (2i - 1) + (2t + 1)$.

$2t + 1$ is the $(t + 1)^{st}$ term of the sequence; thus

$$\sum_{i=1}^{t} (2i - 1) + (2t + 1) = \sum_{i=1}^{t+1} (2i - 1).$$

Therefore, $\text{oddsum}(t)$ produces $\sum_{i=1}^{t} (2i - 1), \forall t \geq 1.$