Definition: Algorithm

Example(s):
The Framework

1. ________________ — means that the solution can be described by an algorithm

 (a) ________________ — the algorithm is efficient

 (b) ________________ — no efficient solution algorithm is known

2. ________________ — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. **Input** —

2. **Output** —

3. **Generality** —
Algorithm Characteristics (2 / 2)

4. Definiteness —

5. Correctness —

6. Finiteness —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

INPUT:
- \(n \) Base 10 value to be converted
- \(\text{base} \) Destination number system

OUTPUT:
- \(\text{digit()} \) digit(0) holds LSD of result

```
quotient <-- n
i <-- 0
while quotient does not equal 0:
  digit(i) <-- quotient modulo base
  quotient <-- the floor of quotient/base
  increment i by 1
end while
```

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate \(f(x) = 2x^3 - 4x^2 + 3x + 6 \)?
Example: Horner’s Algorithm for Polynomial Evaluation

<table>
<thead>
<tr>
<th>INPUT:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Value used to evaluate the polynomial</td>
</tr>
<tr>
<td>n</td>
<td>Largest exponent</td>
</tr>
<tr>
<td>a(0)..a(n)</td>
<td>Coefficients of $x^0 .. x^n$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>Evaluation of the polynomial</td>
</tr>
</tbody>
</table>

```python
def horner_algorithm(x, n, a):
    result = a[n]
    index = n - 1
    while index >= 0:
        result = x * result + a[index]
        decrement index by 1
    end while
    output result
```

Recursive Definitions (1 / 2)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The ____________ determines how trivial cases are to be handled.

(b) The ____________ describes complex problem instances in terms of simpler instances

(c) The ____________ provides bounds on the definition
Recursive Definitions (2 / 2)

Example(s):

Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Example: Factorials (1 / 3)

Definition: Factorial

The factorial of \(n \in \mathbb{Z}^* \), denoted \(n! \), is the product of all integers 1 through \(n \), where \(0! = 1 \).

An iterative factorial algorithm is easy to create:

```plaintext
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1
\]

\[
4! = 4 \cdot 3!
\]

But what are the Basis, Inductive, and Extremal clauses?
Recursive pseudocode algorithm:

```
subprogram factorial ( given: n ) returns: n!
    if n is 0
        return 1
    else
        answer <-- n * factorial(n-1)
        return answer
    endif
end subprogram
```

Conjecture: \(\text{factorial}(n) \) returns \(n! \).
Another Structural Induction Proof (1 / 4)

Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The n^{th} term of the Fibonacci Sequence is the sum of terms $n = 1$ and $n = 2$; where $F(0) = 0$ and $F(1) = 1$.

$F = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$ (A000045)

Recursively generating terms of the sequence is easy …

subprogram fibonacci (given: n) returns: n-th term
 if n is 0 or 1
 return n
 else
 return fibonacci(n-1) + fibonacci(n-2)
 end if
end subprogram
Example: Fibonacci Sequence (2 / 2)

... but inefficient!

Consider this tree of invocations resulting from \texttt{fibonacci(5)}:

\begin{center}
\begin{tikzpicture}
 \node (f5) at (0,0) {$f(5)$};
 \node (f4) at (-2,-1) {$f(4)$};
 \node (f3) at (-2,-2) {$f(3)$};
 \node (f2) at (-4,-3) {$f(2)$};
 \node (f1) at (-4,-4) {$f(1)$};
 \node (f0) at (-4,-5) {$f(0)$};
 \draw (f5) -- (f4);
 \draw (f5) -- (f3);
 \draw (f4) -- (f3);
 \draw (f4) -- (f2);
 \draw (f3) -- (f2);
 \draw (f3) -- (f1);
 \draw (f2) -- (f1);
 \draw (f2) -- (f0);
 \draw (f1) -- (f0);
 \draw (f1) -- (f0);
\end{tikzpicture}
\end{center}

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b,a \mod b) \)

Recursive pseudocode algorithm:

```
subprogram GCD (given: a,b) returns: gcd(a,b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a % b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

\[\mathbb{Z}^+: 1 \ 2 \ 3 \ 4 \ \ldots \ n \ \frac{(m+1)}{2} \]

\[o: 1 \ 3 \ 5 \ 7 \ \ldots \ 2n - 1 \ m \]

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term-1}) + 2\times \text{term} - 1 \)
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

```
subprogram oddsum (given: term)
    returns: sum from 1 through term of (2i-1)
    if term is 1, return 1
    otherwise
        answer <-- oddsum(term-1) + 2*term - 1
    return answer
end if
end subprogram
```

Proving `oddsum()` (1 / 2)

Conjecture: `oddsum(t)` produces \(\sum_{i=1}^{t} (2i - 1) \), \(\forall t \geq 1 \)

Proof (by structural induction):

Basis: At \(t = 1 \), the algorithm returns 1, and \(\sum_{i=1}^{1} (2i - 1) = 1 \). OK!

Inductive: If `oddsum(t)` returns \(\sum_{i=1}^{t} (2i - 1) \),

then `oddsum(t + 1)` returns \(\sum_{i=1}^{t+1} (2i - 1) \).

(Continues …)
When given $t + 1$, \texttt{oddsum()} returns
\[
\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).
\]

By the Inductive Hypothesis, \texttt{oddsum}(t) = \sum_{i=1}^{t} (2i - 1).

Substituting, \texttt{oddsum}(t + 1) returns \[
\sum_{i=1}^{t} (2i - 1) + (2t + 1).
\]

$2t + 1$ is the $(t + 1)^{st}$ term of the sequence; thus
\[
\sum_{i=1}^{t} (2i - 1) + (2t + 1) = \sum_{i=1}^{t+1} (2i - 1).
\]

Therefore, \texttt{oddsum}(t) produces \[
\sum_{i=1}^{t} (2i - 1), \forall t \geq 1.
\]