Topic 14:

Algorithms

Definition: Algorithm

Example(s):
The Framework

1. ________________ — means that the solution can be described by an algorithm

 (a) ________________ — the algorithm is efficient

 (b) ________________ — no efficient solution algorithm is known

2. ________________ — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Algorithm Characteristics (2 / 2)

4. Definiteness —

5. Correctness —

6. Finiteness —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

<table>
<thead>
<tr>
<th>INPUT:</th>
<th>n</th>
<th>Base 10 value to be converted</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td></td>
<td>Destination number system</td>
</tr>
<tr>
<td>OUTPUT:</td>
<td>digit()</td>
<td>digit(0) holds LSD of result</td>
</tr>
</tbody>
</table>

quotient <-- n
i <-- 0
while quotient does not equal 0:
 digit(i) <-- quotient modulo base
 quotient <-- the floor of quotient/base
 increment i by 1
end while

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate $f(x) = 2x^3 - 4x^2 + 3x + 6$?
Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- x
 Value used to evaluate the polynomial
- n
 Largest exponent
- $a(0) \ldots a(n)$
 Coefficients of $x^0 \ldots x^n$

OUTPUT:
- `result`
 Evaluation of the polynomial

```
result <-- a(n)
index <-- n - 1
while index >= 0:
    result <-- $x \times result + a(index)$
    decrement index by 1
end while
output result
```

Recursive Definitions (1 / 3)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The ___________ determines how trivial cases are to be handled.

(b) The ___________ describes complex problem instances in terms of simpler instances

(c) The ___________ provides bounds on the definition
Recursive Definitions (2 / 3)

Example(s):

Recursive Definitions (3 / 3)

An uncommon (but useful) binary tree representation:

Empty Tree: ()

Single Node Tree: ((), data, ())

Two–level Complete Tree: ((((),a,())), b, (((),c,())))

Definition: Recursive Definition of a Binary Tree
A Structural Induction Proof (1 / 3)

Given: The function \(\text{leaves}(b) \) returns the number of leaf nodes in binary tree \(b \).

Conjecture: If \(l \) and \(r \) are binary trees, \(\text{leaves}((()) = 0 \), and \(\text{leaves}((((), d, ())) = 1 \), then \(\text{leaves}((l, d, r)) = \text{leaves}(l) + \text{leaves}(r) \), where \(d \) is a data value.

A Structural Induction Proof (2 / 3)
Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Example: Factorials (1 / 3)

Definition: Factorial

The factorial of \(n \in \mathbb{Z}^* \), denoted \(n! \), is the product of all integers 1 through \(n \), where \(0! = 1 \).

An iterative factorial algorithm is easy to create:

```
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1 \\
4! = 4 \cdot 3!
\]

But what are the Basis, Inductive, and Extremal clauses?
Example: Factorials (3 / 3)

Recursive pseudocode algorithm:

subprogram factorial (given: n) returns: n!
 if n is 0
 return 1
 else
 answer <-- n * factorial(n-1)
 return answer
 endif
end subprogram

Can We Prove Our Algorithm? (1 / 2)

Conjecture: factorial(n) returns n!.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The n^{th} term of the Fibonacci Sequence is the sum of terms $n = 1$ and $n = 2$; where $F(0) = 0$ and $F(1) = 1$:

$F = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$ (A000045)

Recursively generating terms of the sequence is easy …

```
subprogram fibonacci ( given: n ) returns: n-th term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

... but inefficient!

Consider this tree of invocations resulting from \texttt{fibonacci}(5):

\[
\begin{align*}
\text{fibonacci}(5) &= \text{fibonacci}(4) + \text{fibonacci}(3) \\
\text{fibonacci}(4) &= \text{fibonacci}(3) + \text{fibonacci}(2) \\
\text{fibonacci}(3) &= \text{fibonacci}(2) + \text{fibonacci}(1) \\
\text{fibonacci}(2) &= \text{fibonacci}(1) + \text{fibonacci}(0) \\
\text{fibonacci}(1) &= \text{fibonacci}(0) + \text{fibonacci}(0)
\end{align*}
\]

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b,a \mod b) \)

Recursive pseudocode algorithm:

```
subprogram GCD (given: a,b) returns: gcd(a,b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a \mod b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

\[\mathbb{Z}^+: 1 \ 2 \ 3 \ 4 \ \ldots \ n \ \frac{(m+1)}{2} \]

\[o: 1 \ 3 \ 5 \ 7 \ \ldots \ 2n - 1 \ m \]

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term-1}) + 2*\text{term} - 1 \)
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

```plaintext
subprogram oddsum (given: term)
    returns: sum from 1 through term of (2i-1)
    if term is 1, return 1
    otherwise
        answer <-- oddsum(term-1) + 2*term - 1
        return answer
    end if
end subprogram
```

Proving oddsum() (1 / 2)

Conjecture: oddsum(t) produces $\sum_{i=1}^{t}(2i - 1)$, $\forall t \geq 1$

Proof (by structural induction):

Basis: At $t = 1$, the algorithm returns 1, and $\sum_{i=1}^{1}(2i - 1) = 1$. OK!

Inductive: If oddsum(t) returns $\sum_{i=1}^{t}(2i - 1)$,

then oddsum(t + 1) returns $\sum_{i=1}^{t+1}(2i - 1)$.

(Continues ...)
When given \(t + 1 \), \(\text{oddsum}(t) \) returns
\[
\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).
\]

By the Inductive Hypothesis, \(\text{oddsum}(t) = \sum_{i=1}^{t} (2i - 1) \).

Substituting, \(\text{oddsum}(t + 1) \) returns
\[
\sum_{i=1}^{t} (2i - 1) + (2t + 1).
\]

\(2t + 1 \) is the \((t + 1)^{st}\) term of the sequence; thus
\[
\sum_{i=1}^{t} (2i - 1) + (2t + 1) = \sum_{i=1}^{t+1} (2i - 1).
\]

Therefore, \(\text{oddsum}(t) \) produces \(\sum_{i=1}^{t} (2i - 1) \), \(\forall t \geq 1 \).