Definition: Algorithm

Example(s):
The Framework

1. _____________ — means that the solution can be described by an algorithm

 (a) _______________ — the algorithm is efficient

 (b) _______________ — no efficient solution algorithm is known

2. _______________ — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Algorithm Characteristics (2 / 2)

4. **Definiteness** —

5. **Correctness** —

6. **Finiteness** —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

INPUT:
- n: Base 10 value to be converted
- base: Destination number system

OUTPUT:
- digit(): digit(0) holds LSD of result

```plaintext
quotient <-- n
i <-- 0
while quotient does not equal 0:
    digit(i) <-- quotient modulo base
    quotient <-- the floor of quotient/base
    increment i by 1
end while
```

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate \(f(x) = 2x^3 - 4x^2 + 3x + 6 \)?
Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- x Value used to evaluate the polynomial
- n Largest exponent
- $a(0) \ldots a(n)$ Coefficients of $x^0 \ldots x^n$

OUTPUT:
- result Evaluation of the polynomial

```
result <-- a(n)
index <-- n - 1
while index >= 0:
    result <-- x * result + a(index)
    decrement index by 1
end while
output result
```

Recursive Definitions (1 / 2)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The ________________ determines how trivial cases are to be handled.

(b) The ________________ describes complex problem instances in terms of simpler instances

(c) The ________________ provides bounds on the definition
Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Example: Factorials (1 / 3)

Definition: Factorial

The factorial of \(n \in \mathbb{Z}^* \), denoted \(n! \), is the product of all integers 1 through \(n \), where \(0! = 1 \).

An iterative factorial algorithm is easy to create:

```plaintext
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1
\]

\[
4! = 4 \cdot 3!
\]

But what are the Basis, Inductive, and Extremal clauses?
Recursive pseudocode algorithm:

```plaintext
subprogram factorial ( given: n ) returns: n!
  if n is 0
    return 1
  else
    answer <-- n * factorial(n-1)
    return answer
  endif
end subprogram
```

Can We Prove Our Algorithm? (1 / 2)

Conjecture: `factorial(n)` returns \(n! \).
Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The \(n\)th term of the Fibonacci Sequence is the sum of terms \(n = 1\) and \(n = 2\); where \(F(0) = 0\) and \(F(1) = 1\):

\[
F = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \text{(A000045)}
\]

Recursively generating terms of the sequence is easy …

```plaintext
subprogram fibonacci ( given: n ) returns: n-th term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

...but inefficient!

Consider this tree of invocations resulting from $\text{fibonacci}(5)$:

```
f(5)
   +
   |
  f(4)   f(3)
     +
     |
f(3)   f(2)
   +
   |
f(2)   f(1)
   +
   |
f(1)   f(0)
```

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b,a \mod b) \)

Recursive pseudocode algorithm:

```plaintext
subprogram GCD (given: a, b) returns: gcd(a, b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a \mod b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

\[\mathbb{Z}^+: 1 \ 2 \ 3 \ 4 \ \ldots \ \ n \ \frac{(m+1)}{2} \]

\[o: 1 \ 3 \ 5 \ 7 \ \ldots \ \ 2n - 1 \ \ m \]

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term}-1) + 2*\text{term} - 1 \)
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

subprogram oddsum (given: term)
 returns: sum from 1 through term of (2i-1)
 if term is 1, return 1
 otherwise
 answer <-- oddsum(term-1) + 2*term - 1
 return answer
end if
end subprogram

Proving oddsum () (1 / 2)

Conjecture: oddsum(t) produces \(\sum_{i=1}^{t} (2i - 1) \), \(\forall t \geq 1 \)

Proof (by structural induction):

Basis: At \(t = 1 \), the algorithm returns 1, and \(\sum_{i=1}^{1} (2i - 1) = 1 \). OK!

Inductive: If oddsum(t) returns \(\sum_{i=1}^{t} (2i - 1) \),

then oddsum(t + 1) returns \(\sum_{i=1}^{t+1} (2i - 1) \).

(Continues …)
When given $t + 1$, \texttt{oddsum()} returns

$$\texttt{oddsum}(t) + [2(t + 1) - 1] = \texttt{oddsum}(t) + (2t + 1).$$

By the Inductive Hypothesis, $\texttt{oddsum}(t) = \sum_{i=1}^{t} (2i - 1)$.

Substituting, $\texttt{oddsum}(t + 1)$ returns $\sum_{i=1}^{t} (2i - 1) + (2t + 1)$.

$2t + 1$ is the $(t + 1)^{st}$ term of the sequence; thus

$$\sum_{i=1}^{t} (2i - 1) + (2t + 1) = \sum_{i=1}^{t+1} (2i - 1).$$

Therefore, $\texttt{oddsum}(t)$ produces $\sum_{i=1}^{t} (2i - 1)$, $\forall t \geq 1$.