Algorithms

Definition: Algorithm

Example(s):
The Framework

1. — means that the solution can be described by an algorithm

 (a) — the algorithm is efficient

 (b) — no efficient solution algorithm is known

2. — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Algorithm Characteristics (2 / 2)

4. **Definiteness** —

5. **Correctness** —

6. **Finiteness** —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

INPUT:
- \(n \)
 Base 10 value to be converted
- `base`
 Destination number system

OUTPUT:
- `digit()`
 `digit(0)` holds LSD of result

\[
\text{quotient} \leftarrow n
\text{i} \leftarrow 0
\text{while quotient does not equal 0:}
\phantom{\text{digit}(i) \leftarrow \text{quotient modulo base}}
\phantom{\text{quotient} \leftarrow \text{the floor of quotient/base}}
\phantom{\text{increment i by 1}}
\text{end while}
\]

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate \(f(x) = 2x^3 - 4x^2 + 3x + 6 \)?
Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- x: Value used to evaluate the polynomial
- n: Largest exponent
- a(0) .. a(n): Coefficients of \(x^0 .. x^n \)

OUTPUT:
- result: Evaluation of the polynomial

\[
\text{result} \leftarrow a(n) \\
\text{index} \leftarrow n - 1 \\
\text{while index} \geq 0: \\
\quad \text{result} \leftarrow x \times \text{result} + a(\text{index}) \\
\quad \text{decrement index by 1} \\
\text{end while} \\
\text{output result}
\]
Recursive Definitions (3 / 3)

An uncommon (but useful) binary tree representation:

Empty Tree: ()

Single Node Tree: ((), data, ())

Two–level Complete Tree: ((((),a,())), b, (((),c,()))

Definition: Recursive Definition of a Binary Tree
A Structural Induction Proof (1 / 3)

Given: The function $\text{leaves}(b)$ returns the number of leaf nodes in binary tree b.

Conjecture: If l and r are binary trees, $\text{leaves}() = 0$, and $\text{leaves}(((), d, ())) = 1$, then $\text{leaves}((l, d, r)) = \text{leaves}(l) + \text{leaves}(r)$, where d is a data value.

A Structural Induction Proof (2 / 3)
Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Definition: Factorial

The factorial of $n \in \mathbb{Z}^*$, denoted $n!$, is the product of all integers 1 through n, where $0! = 1$. (A000142)

An iterative factorial algorithm is easy to create:

```
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

$$4! = 4 \cdot 3 \cdot 2 \cdot 1$$

$$4! = 4 \cdot 3!$$

But what are the Basis, Inductive, and Extremal clauses?
Recursive pseudocode algorithm:

```plaintext
subprogram factorial ( given: n ) returns: n!
    if n is 0
        return 1
    else
        answer <-- n * factorial(n-1)
        return answer
    endif
end subprogram
```

Can We Prove Our Algorithm? (1 / 2)

Conjecture: \(\text{factorial}(n) \text{ returns } n! \).
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The \(n^{th} \) term of the Fibonacci Sequence is the sum of terms
\(n = 1 \) and \(n = 2 \); where \(F(0) = 0 \) and \(F(1) = 1 \):

\[
F = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \quad (A000045)
\]

Recursively generating terms of the sequence is easy …

```plaintext
subprogram fibonacci ( given: n ) returns: n-th term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

... but inefficient!

Consider this tree of invocations resulting from \(\text{fibonacci}(5) \):

\[
\begin{align*}
f(5) &= f(4) + f(3) \\
f(4) &= f(3) + f(2) \\
f(3) &= f(2) + f(1) \\
f(2) &= f(1) + f(0) \\
f(1) &= f(1) + f(0) \\
\end{align*}
\]

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b, a \mod b) \)

Recursive pseudocode algorithm:

```pseudocode
subprogram GCD (given: a, b) returns: gcd(a, b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a \mod b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

\[Z^+ : \hspace{1cm} 1 \ 2 \ 3 \ 4 \ \ldots \ \hspace{1cm} n \ \hspace{1cm} \frac{(m+1)}{2} \]

\[o: \hspace{1cm} 1 \ 3 \ 5 \ 7 \ \ldots \ \hspace{1cm} 2n - 1 \ \hspace{1cm} m \]

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term-1}) + 2 \times \text{term} - 1 \)
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

```
subprogram oddsum (given: term)
    returns: sum from 1 through term of (2i-1)

    if term is 1, return 1
    otherwise
        answer <-- oddsum(term-1) + 2*term - 1
        return answer
    end if

end subprogram
```

Proving oddsum() (1 / 2)

Conjecture: oddsum(t) produces $\sum_{i=1}^{t}(2i - 1)$, $\forall t \geq 1$

Proof (by structural induction):

Basis: At $t = 1$, the algorithm returns 1, and $\sum_{i=1}^{1}(2i - 1) = 1$. OK!

Inductive: If oddsum(t) returns $\sum_{i=1}^{t}(2i - 1)$,

then oddsum(t + 1) returns $\sum_{i=1}^{t+1}(2i - 1)$.

(Continues …)
When given \(t + 1 \), \(\text{oddsum()} \) returns
\[
\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).
\]

By the Inductive Hypothesis, \(\text{oddsum}(t) = \sum_{i=1}^{t} (2i - 1) \).

Substituting, \(\text{oddsum}(t + 1) \) returns
\[
\sum_{i=1}^{t} (2i - 1) + (2t + 1).
\]

\(2t + 1 \) is the \((t + 1)^{st} \) term of the sequence; thus
\[
\sum_{i=1}^{t} (2i - 1) + (2t + 1) = \sum_{i=1}^{t+1} (2i - 1).
\]

Therefore, \(\text{oddsum}(t) \) produces
\[
\sum_{i=1}^{t} (2i - 1), \quad \forall t \geq 1.
\]