Algorithms

Definition: Algorithm

Example(s):
The Framework

1. — means that the solution can be described by an algorithm
 (a) — the algorithm is efficient
 (b) — no efficient solution algorithm is known

2. — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Algorithm Characteristics (2 / 2)

4. **Definiteness** —

5. **Correctness** —

6. **Finiteness** —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

INPUT:
- n Base 10 value to be converted
- base Destination number system

OUTPUT:
- `digit()` `digit(0)` holds LSD of result

```
quotient <-- n
i <-- 0
while quotient does not equal 0:
    digit(i) <-- quotient modulo base
    quotient <-- the floor of quotient/base
    increment i by 1
end while
```

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate $f(x) = 2x^3 - 4x^2 + 3x + 6$?
Some Sample Iterative Algorithms (3 / 3)

Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- \(x \) Value used to evaluate the polynomial
- \(n \) Largest exponent
- \(a(0) \ldots a(n) \) Coefficients of \(x^0 \ldots x^n \)

OUTPUT:
- \(\text{result} \) Evaluation of the polynomial

\[
\begin{align*}
\text{result} & \leftarrow a(n) \\
\text{index} & \leftarrow n - 1 \\
\text{while} \quad \text{index} \geq 0: \\
\quad \text{result} & \leftarrow x \times \text{result} + a(\text{index}) \\
\quad \text{decrement} \quad \text{index} \quad \text{by} \quad 1 \\
\text{end while} \\
\text{output} \quad \text{result}
\end{align*}
\]

Recursive Definitions (1 / 2)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The \(\quad \) determines how trivial cases are to be handled.

(b) The \(\quad \) describes complex problem instances in terms of simpler instances

(c) The \(\quad \) provides bounds on the definition
Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Example: Factorials (1 / 3)

Definition: Factorial

The factorial of $n \in \mathbb{Z}^*$, denoted $n!$, is the product of all integers 1 through n, where $0! = 1$.

An iterative factorial algorithm is easy to create:

```plaintext
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

$$4! = 4 \cdot 3 \cdot 2 \cdot 1$$

$$4! = 4 \cdot 3!$$

But what are the Basis, Inductive, and Extremal clauses?
Example: Factorials (3 / 3)

Recursive pseudocode algorithm:

```
subprogram factorial ( given: n ) returns: n!
    if n is 0
        return 1
    else
        answer <-- n * factorial(n-1)
        return answer
    endif
end subprogram
```

Can We Prove Our Algorithm? (1 / 2)

Conjecture: \(\text{factorial}(n) \) returns \(n! \).
Another Structural Induction Proof (1 / 4)

Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The \(n \)th term of the Fibonacci Sequence is the sum of terms \(n - 1 \) and \(n - 2 \), where \(F(0) = 0 \) and \(F(1) = 1 \).

Recursively generating terms of the sequence is easy ...

```
subprogram fibonacci ( given: n ) returns: n-th term
  if n is 0 or 1
    return n
  else
    return fibonacci(n-1) + fibonacci(n-2)
  end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

... but inefficient!

Consider this tree of invocations resulting from \(\text{fibonacci}(5) \):

\[
\begin{align*}
\text{fibonacci}(5) & \quad + \\
\text{fibonacci}(4) & \quad + \\
\text{fibonacci}(3) & \\
\text{fibonacci}(3) & \quad + \\
\text{fibonacci}(2) & \\
\text{fibonacci}(2) & \quad + \\
\text{fibonacci}(1) & \\
\text{fibonacci}(1) & + \\
\text{fibonacci}(0) & \\
\text{fibonacci}(0) & \\
\end{align*}
\]

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b,a \mod b) \)

Recursive pseudocode algorithm:

```plaintext
subprogram GCD (given: a,b) returns: gcd(a,b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a \mod b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

\[\mathbb{Z}^+ : 1 \ 2 \ 3 \ 4 \ \ldots \ \ n \ \frac{(m+1)}{2} \]

\[o : 1 \ 3 \ 5 \ 7 \ \ldots \ \ 2n - 1 \ \ m \]

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term}-1) + 2*\text{term} - 1 \)
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

subprogram oddsum (given: term)
 returns: sum from 1 through term of (2i-1)
 if term is 1, return 1
 otherwise
 answer <-- oddsum(term-1) + 2*term - 1
 return answer
 end if
end subprogram

Proving oddsum() (1 / 2)

Conjecture: oddsum(t) produces \(\sum_{i=1}^{t} (2i - 1), \forall t \geq 1\)

Proof (by structural induction):

Basis: At \(t = 1\), the algorithm returns 1, and \(\sum_{i=1}^{1} (2i - 1) = 1\). OK!

Inductive: If oddsum(t) returns \(\sum_{i=1}^{t} (2i - 1)\),

then oddsum(t + 1) returns \(\sum_{i=1}^{t+1} (2i - 1)\).

(Continues …)
When given \(t + 1 \), \(\text{oddsum}() \) returns
\[
\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).
\]

By the Inductive Hypothesis, \(\text{oddsum}(t) = \sum_{i=1}^{t}(2i - 1) \).

Substituting, \(\text{oddsum}(t + 1) \) returns
\[
\sum_{i=1}^{t}(2i - 1) + (2t + 1).
\]

\(2t + 1 \) is the \((t + 1)^{st}\) term of the sequence; thus
\[
\sum_{i=1}^{t}(2i - 1) + (2t + 1) = \sum_{i=1}^{t+1}(2i - 1).
\]

Therefore, \(\text{oddsum}(t) \) produces
\[
\sum_{i=1}^{t}(2i - 1), \forall t \geq 1.
\]