Recurrence Relations & Recursion

Computer Science has recursion.
Mathematics has recurrence relations.

Example(s):
Recurrence Relations

Definition: Recurrence Relation

Example(s):

Solving Recurrence Relations
Definition: Linear Homogeneous Recurrence Relation
With Constant Coefficients (LHRRWCC) Of Degree k

Example(s):

Solving LHRRWCCs Of Degree 2 (1/2)
Theorem: Assume a characteristic equation
\[w^2 - c_1w - c_2 = 0 \] with \(c_1, c_2 \in \mathbb{R} \) and roots \(r_1 \) and \(r_2 \) such that \(r_1 \neq r_2 \). The sequence \(\{R(n)\} \) is a solution to \(R(n) = c_1R(n-1) + c_2R(n-2) \) iff
\[R(n) = \alpha_1 r_1^n + \alpha_2 r_2^n \] where \(n \in \mathbb{Z}^* \) and \(\alpha_1, \alpha_2 \in \mathbb{R} \).

Solution Procedure: LHRRWCCs of Degree 2

1. Identify \(c_1 \) & \(c_2 \) and create the characteristic equation
 \[w^2 - c_1w - c_2 = 0 \]

2. Insert the roots of the characteristic equation \((r_1 \ & r_2) \) into the closed-form expression \(R(n) = \alpha_1 r_1^n + \alpha_2 r_2^n \)

3. Using the initial conditions, create two equations in two unknowns \((\alpha_1 \ and \ \alpha_2) \)

4. Solve for \(\alpha_1 \) and \(\alpha_2 \) to complete the solution
Example: Solving a LHRRWCC of Degree 2

Solve: \[R(n) = 3R(n - 1) - 2R(n - 2) \]

where \(R(0) = 200 \) and \(R(1) = 220 \).

“Divide & Conquer” Recurrence Relations (1 / 2)

From the Latin *Divide Et Impera* (“divide and rule”)

Background:
“Divide & Conquer” Recurrence Relations (2 / 2)

Example(s):

Solving Divide & Conquer Rec. Relations (1 / 6)

“Find The Pattern” (a.k.a. Iterative (or Backward) Substitutions)

Example(s):
Conjecture: \(S(n) = k \cdot \log_2 n + 1 \)
Conjecture: \(Q(n) = \frac{n(n+1)}{2} \)

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Theorem: (The Master Theorem) Given a recursive function of the form $T(n) = a \cdot T(n/b) + c \cdot n^d$, where:

- $T(n)$ is an increasing function,
- $n = b^k$,
- k is an integer > 0,
- a is a real ≥ 1,
- b is an integer > 1,
- c is a real > 0, and
- d is a real ≥ 0,

then:

$$f(n) = \begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \cdot \log_2 n) & \text{if } a = b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$

Example(s):

Binary Search's recurrence: $S(n) = S(n/2) + k$

Recall: We determined $S(n) = k \cdot \log_2 n + 1 \Rightarrow O(\log_2 n)$

From the Master Theorem: $T(n) = a \cdot T(n/b) + c \cdot n^d$

For Bin. Search, $a = 1$, $b = 2$, $c = k$, and $d = 0$

The 2nd case applies: $a = b^d$ ($1 = 2^0$)

Therefore, $S(n)$ is $O(n^d \cdot \log_2 n)$, or $O(\log_2 n)$.

\Rightarrow We got it right!

Note: Master Theorem doesn't fit Quicksort's worst case.