## Topic 5:

## Implementation Data Models

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 1/22

## A Wee Bit O' History

There are four data models of note:

- 1. Hierarchical (early 1960s, IBM)
- 2. Network (early 1970s, CODASYL/DBTG)
- 3. Relational (early 1970s, Codd @ IBM)
- 4. Object (???)

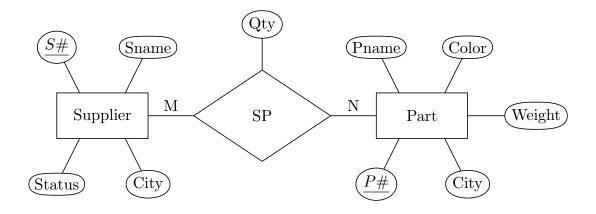
### Hierarchical Model: Background and Ideas

#### Background:

- John F. Kennedy, May 25, 1961: '... man on the moon ...'
- Rockwell needed to organize parts for the Apollo CM & SM
- IBM created IMS (Information Management System) in 1968
  - o original name: ICS/DL/I; thankfully renamed in '69
  - o both used and introduced the Hierarchical Model
  - o still sold today!

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 3/22

## Hierarchical Model: Terminology


#### Sample Logical Schema:

#### Terminology:

| E-R Model     |          | Hierarchical Model |
|---------------|----------|--------------------|
| Entity Set    | =        |                    |
| Entity        | $\equiv$ |                    |
| Attributes    | $\equiv$ |                    |
| Relationships | =        |                    |

# Hierarchical Model: Supplier-Part Schema

Consider this subset of Codd's SPJ schema:



Implementation Data Models - CSc 460 v1.1 (McCann) - p. 5/22

# Hierarchical Model: M:N Relationships (1 / 3)

Still a Logical Schema, but augmented with fields:

# Hierarchical Model: M:N Relationships (2 / 3)

Physical Schema:

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 7/22

# Hierarchical Model: M:N Relationships (3 / 3)

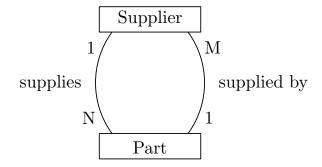
The physical schema for Supplier-Part w/ sample data:

# Network Model: Background and Ideas

- Created in the early 1970s by CODASYL's (Conference/Committee on Data Systems Languages)
   DBTG (Database Task Group)
- Goal: A standard theory of DB systems.
  Origin of the ideas of DML and DDL
- Became an ISO standard in 1987 (ISO 8907:1987)
  (And was withdrawn in 1998!)
- Graph—based instead of tree—based

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 9/22

## Network Model: Terminology


A Sample Logical Schema:

#### Terminology:

| E-R Model     |   | Network Model |
|---------------|---|---------------|
| Entity Set    | = |               |
| Entity        | = |               |
| Attributes    | = |               |
| Relationships | = |               |

## Network Model: M:N Relationships (1 / 2)

Logical Schema (of the M:N Supplier - Part relationship):



Implementation Data Models - CSc 460 v1.1 (McCann) - p. 11/22

# Network Model: M:N Relationships (2 / 2)

Physical Schema (and just a little messy ...):

### Relational Model: Background and Ideas

- Created by Edgar F. Codd. Famous paper:
  - "A relational model of data for large shared data banks," 1970.
- Theoretical foundation: Set Theory
- Uses foreign keys instead of pointers
- No distinction between logical and physical schemas

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 13/22

### Relational Model: DMLs

Codd proposed two types of DMLs:

# Relational Model: Terminology (1 / 2)

#### Sample Supplier - Part Schema:

| ; | <u>S#</u> | Sname | Status | City |
|---|-----------|-------|--------|------|
|   | S1        | Acme  | 10     | Omro |
|   | S2        | Fubar | 10     | Fisk |
|   | S3        | Snafu | 20     | Ring |

| • | <u>P#</u> | Pname | Color | Weight | City  |
|---|-----------|-------|-------|--------|-------|
|   | P1        | Nut   | Pink  | 0.2    | Anton |
|   | P2        | Bolt  | Blue  | 0.9    | Borea |

#### Terminology:

E-R Model Relational Model

Entity Set  $\equiv$ 

Entity ≡

Attributes  $\equiv$ 

Relationships =

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 15/22

# Relational Model: Terminology (2 / 2)

#### Sample Department – Employee Schema:

DEPARTMENT

| DeptNum | DeptName | ManagerID | ManagerStartDate |
|---------|----------|-----------|------------------|
| 1       | Shipping | 364       | 2001-04-01       |
| 2       | Payroll  | NULL      | NULL             |
| 3       | Billing  | 298       | 2000-11-17       |

**EMPLOYEE** 

| Surname | GivenName | EmpNum | DeptID | Salary |
|---------|-----------|--------|--------|--------|
| Spade   | Sam       | 786    | 1      | 48000  |
| Trune   | Joe       | 410    | 2      | 49500  |
| Smith   | Megan     | 364    | 1      | 75000  |
| Maher   | Mary      | 298    | 3      | 72000  |

#### Relational Model: Misc. Notes

- Order of tuples in a relation is logically irrelevant (Why?)
- Fields are single-valued by default (vs. set-valued)
- Relationships are supported by foreign keys

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 17/22

# Relational Model: 1:N Relationships

We've already seen how to do this! (Just two slides ago!)

**DEPARTMENT** 

| DeptNum | DeptName | ManagerID | ManagerStartDate |
|---------|----------|-----------|------------------|
| 1       | Shipping | 364       | 2001-04-01       |
| 2       | Payroll  | NULL      | NULL             |
| 3       | Billing  | 298       | 2000-11-17       |

**EMPLOYEE** 

| Surname | GivenName | EmpNum | DeptID | Salary |
|---------|-----------|--------|--------|--------|
| Spade   | Sam       | 786    | 1      | 48000  |
| Trune   | Joe       | 410    | 2      | 49500  |
| Smith   | Megan     | 364    | 1      | 75000  |
| Maher   | Mary      | 298    | 3      | 72000  |

# Relational Model: 1:1 Relationships

- Just a restriction of 1:N relationships:
  - We still store a FK in the 'many' relation
  - Must constrain the field's values to be unique; two options:

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 19/22

# Relational Model: M:N Relationships

S

| <u>S#</u> | Sname | Status | City |
|-----------|-------|--------|------|
| S1        | Acme  | 10     | Omro |
| S2        | Fubar | 10     | Fisk |
| S3        | Snafu | 20     | Ring |

Р

| <u>P#</u> | Pname | Color | Weight | City  |
|-----------|-------|-------|--------|-------|
| P1        | Nut   | Pink  | 0.2    | Anton |
| P2        | Bolt  | Blue  | 0.9    | Borea |

SP

| <u>S#</u> | <u>P#</u> | Qty |
|-----------|-----------|-----|
| S1        | P1        | 50  |
| S1        | P2        | 150 |
| S2        | P2        | 25  |
| S3        | P1        | 300 |

#### Object Model: Ideas

- OO programming languages have existed since Simula in 1967
- We'd like to be able to store objects in a DBMS
  - provides object persistence
  - can do it by mapping object instance fields to relational tuples, but that's clunky
- The Object Data Management Group (ODMG) defined an object-based DBMS standard
  - finished ODMG 3.0 in 2001 (and then disbanded!)

Implementation Data Models - CSc 460 v1.1 (McCann) - p. 21/22

## Object Model: Object DBMS Types

#### Two major varieties:

- 1. Object Oriented DBMS (OODBMS)
  - Marriage of an OOPL and a DBMS
- 2. Object Relational DBMS (ORDBMS)
  - A relational DBMS with added objects