Relational Algebra

Relational Algebra - CSc 460 v1.1 (McCann) - p. 1/30

Background

- Introduced by Codd (along with the Tuple Relational Calculus)
- Relational Algebra ...:
 - Is procedural, like most programming languages
 - we need to supply an ordering of operations
 - Would <u>not</u> be a good replacement for SQL in a DBMS
 - Is a good introduction to the operators provided by SQL

Relational Operators (1 / 2)

Relations are *closed* under Relational Algebra operators

- That is, they accept relations as operands, and produce relations as results.
- Example: Integers are closed under + and -.

The eight basic Relational Algebra operators are:

Relational Algebra - CSc 460 v1.1 (McCann) - p. 3/30

Relational Operators (2 / 2)

The eight Relational Algebra operators can be grouped in two ways:

- 1. Set vs. Relational:
 - Set: \cup , \cap , -, \times , ÷
 - Relational: σ , π , \bowtie
- 2. Fundamental vs. Derived:
 - Fundamental: σ , π , \times , \cup , –
 - Derived: \cap , \bowtie , \div

The Fundamental Operators

- Select (σ)
- Project (π)
- Cartesian Product (×)
- Union (\cup)
- Difference (-)

Relational Algebra - CSc 460 v1.1 (McCann) - p. 5/30

Select (σ , sigma) (1 / 2)

- A unary (single argument) operator
- Chooses full tuples from a relation based on a condition
- Form:

Example(s):

List all information of the employees in department #5:

Who are the active suppliers in Paris?

Select (σ , sigma) (2 / 2)

Notes:

- Conditions may be as complex as is necessary
- Select is commutative:

$$\sigma_A(\sigma_B(\mathbf{r}))\equiv\sigma_B(\sigma_A(\mathbf{r}))$$

• Cascades of selects \equiv conjunction in a single select:

$$\sigma_A(\sigma_B(\sigma_C(\mathbf{r})))\equiv\sigma_{A\wedge B\wedge C}(\mathbf{r})$$

Relational Algebra - CSc 460 v1.1 (McCann) - p. 7/30

Project (π , pi) (1 / 2)

Pronunciation: PRO-ject (not pro-JECT, not PRAH-ject)

- Also a unary operator
- Chooses named columns from a relation
 - Resulting group of tuples may include duplicates ...
 - ... which we drop to preserve entity integrity
- Form:

Project (π , pi) (2 / 2)

Example(s):

Find the names & salaries of the employees in department 5: Alternatively:

Relational Algebra - CSc 460 v1.1 (McCann) - p. 9/30

Cartesian Product (\times) (1 / 2)

- A binary operator (form: $R \times S$)
- 'Marries' all pairings of tuples from the given relations
 - resulting cardinality = $card(R) \cdot card(S)$
 - resulting degree = degree(R) + degree(S)

Cartesian Product (\times) (2 / 2)

Example(s):

Relational Algebra - CSc 460 v1.1 (McCann) - p. 11/30

Union (∪) (1 / 2)

- Another binary operator (form: $R \cup S$)
- Result contains all tuples of both relations w/o duplicates

Example(s):

"Create a table of the Phoenix and Tucson employee data."

Union (∪) (2 / 2)

To perform R \cup S, R and S must be union compatible.

Definition: Union Compatible

Example(s):

Relational Algebra - CSc 460 v1.1 (McCann) - p. 13/30

Difference (-) (1 / 2)

• Do you remember this one from basic sets?

 $\{a, b, c, d, e, f\} - \{b, d, f, h\} = \{a, c, e\}$

- Yet another binary operator (form: R S)
- Result is a relation of tuples from R that are <u>not</u> also in S
- Note that R and S must be union compatible

Difference (-) (2 / 2)

Example(s):

Relational Algebra - CSc 460 v1.1 (McCann) - p. 15/30

The Derived Operators

- Intersection (\cap)
- Join (⋈)
- Division (\div)

Intersection (\cap) (1 / 2)

- YABO Yet Another Binary Operator! (form: $R \cap S$)
- Resulting relation has the tuples that appear in both operand relations
- As with difference, R and S must be union compatible

Relational Algebra - CSc 460 v1.1 (McCann) - p. 17/30

Intersection (\cap) (2 / 2)

Join (🖂) (1 / 3)

- YABO! (form: R ⋈_{condition} S)
- Join is used to exploit PK-FK connections

(using it with other attributes is unwise!)

Relational Algebra - CSc 460 v1.1 (McCann) - p. 19/30

Join (🖂) (2 / 3)

What are the names of the parts that can be supplied by individual suppliers in quantity $>$ 200?	
Without 🖂 :	$\pi_{\text{pname}}(\sigma_{\text{qty}>200}(\sigma_{\text{SP.P}\text{\#}=\text{P.P}\text{\#}}(\text{SP}\times\text{P})))$
With 🖂 :	

Join (🖂) (3 / 3)

Three join variations:

- 1. <u>Theta Join</u>: $r \bowtie_{\theta} s$
- 2. Equijoin: $r \bowtie_{\theta} s$
- 3. <u>Natural Join</u>: $\mathbf{r} \bowtie \mathbf{s} \equiv \pi_{\mathsf{R} \cup \mathsf{S}}(\mathbf{r} \bowtie_{\mathsf{r.a1}=\mathsf{s.a1} \land \mathsf{r.a2}=\mathsf{s.a2} \land \dots} \mathbf{s})$ where R and S are the attribute sets of r and s, respectively

Relational Algebra - CSc 460 v1.1 (McCann) - p. 21/30

Division (÷) (1 / 9)

Let α and β be relations, where A-B is the set difference of the attributes of α & β

Definition of Relational Division:

Division (\div) (2 / 9)

Let's review multiplication and division of integers:

Ex:
$$4 * 6 = 24$$
, so $24/6 = 4$ and $24/4 = 6$.

Now, consider Cartesian Product and Division with relations:

Relational Algebra - CSc 460 v1.1 (McCann) - p. 23/30

Division (\div) (3 / 9)

What purpose does Division serve?

Relational Algebra - CSc 460 v1.1 (McCann) - p. 25/30

Division (\div) (5 / 9)

Division
$$(\div)$$
 (6 / 9)

Let's examine the definition in detail:

$$\alpha \div \beta = \pi_{\mathrm{s}\mathrm{s}\mathrm{f}}(\alpha) - \pi_{\mathrm{s}\mathrm{f}}((\pi_{\mathrm{s}\mathrm{f}}(\alpha) \times \beta) - \alpha)$$

Relational Algebra - CSc 460 v1.1 (McCann) - p. 27/30

Division (\div) (7 / 9)

Looking at the data should help, too:

Division (\div) (8 / 9)

And so, finally, we have our answer:

Supplier S5 supplies all parts of weight 17 (P2 and P3).

Relational Algebra - CSc 460 v1.1 (McCann) - p. 29/30

Division (\div) (9 / 9)

Is there a short-cut to avoid that mess? NO!

Consider this very similar query:

Find the S#s of the suppliers that supply

all parts of weight = 19.

The only weight = 19 part is P6, which this simple

expression produces: $\pi_{S\#}(\alpha \bowtie_{P\#} \beta) (\rightarrow S4 \text{ and } S5)$

But, when weight = 17, that query gives S2, S3, and S5!