
Topic 7:

Relational Algebra

Relational Algebra – CSc 460 v1.1 (McCann) – p. 1/30

Background

• Introduced by Codd (along with the Tuple Relational

Calculus)

• Relational Algebra . . . :

◦ Is procedural, like most programming languages

— we need to supply an ordering of operations

◦ Would not be a good replacement for SQL in a DBMS

◦ Is a good introduction to the operators provided by SQL

Relational Algebra – CSc 460 v1.1 (McCann) – p. 2/30

Relational Operators (1 / 2)

Relations are closed under Relational Algebra operators

• That is, they accept relations as operands, and produce

relations as results.

• Example: Integers are closed under + and−.

The eight basic Relational Algebra operators are:

× ⊲⊳

− π

÷ σ

∩ ∪

Relational Algebra – CSc 460 v1.1 (McCann) – p. 3/30

Relational Operators (2 / 2)

The eight Relational Algebra operators can be grouped in

two ways:

1. Set vs. Relational:

• Set: ∪, ∩, –,×,÷

• Relational: σ, π, ⊲⊳

2. Fundamental vs. Derived:

• Fundamental: σ, π,×, ∪, –

• Derived: ∩, ⊲⊳,÷

Relational Algebra – CSc 460 v1.1 (McCann) – p. 4/30

The Fundamental Operators

– Select (σ)

– Project (π)

– Cartesian Product (×)

– Union (∪)

– Difference (−)

Relational Algebra – CSc 460 v1.1 (McCann) – p. 5/30

Select (σ, sigma) (1 / 2)

• A unary (single argument) operator

• Chooses full tuples from a relation based on a condition

• Form:

Example(s):

List all information of the employees in department #5:

Who are the active suppliers in Paris?

Relational Algebra – CSc 460 v1.1 (McCann) – p. 6/30

Select (σ, sigma) (2 / 2)

Notes:

• Conditions may be as complex as is necessary

• Select is commutative:

σ
A
(σ

B
(r)) ≡ σ

B
(σ

A
(r))

• Cascades of selects≡ conjunction in a single select:

σ
A
(σ

B
(σ

C
(r))) ≡ σ

A∧B∧C(r)

Relational Algebra – CSc 460 v1.1 (McCann) – p. 7/30

Project (π, pi) (1 / 2)

Pronunciation: PRO-ject (not pro-JECT, not PRAH-ject)

• Also a unary operator

• Chooses named columns from a relation

◦ Resulting group of tuples may include duplicates . . .

◦ . . . which we drop to preserve entity integrity

• Form:

Relational Algebra – CSc 460 v1.1 (McCann) – p. 8/30

Project (π, pi) (2 / 2)

Example(s):

Find the names & salaries of the employees in department 5:

Alternatively:

Relational Algebra – CSc 460 v1.1 (McCann) – p. 9/30

Cartesian Product (×) (1 / 2)

• A binary operator (form: R× S)

• ‘Marries’ all pairings of tuples from the given relations

◦ resulting cardinality = card(R) · card(S)

◦ resulting degree = degree(R) + degree(S)

Example(s):

A m n

2 i

3 iv

7 x

B o p

3 β
7 α

Relational Algebra – CSc 460 v1.1 (McCann) – p. 10/30

Cartesian Product (×) (2 / 2)

Example(s):

What are the names of the active suppliers of nuts?

The complete query:

πSname(σStatus>0∧ Pname=‘Nut’(σS.S# = SP.S#(σSP.P# = P.P#(S × (SP × P)))))

For a visualization of this query step–by–step with sample

data, see the handout:

“Examples of the Relation Algebra Operations σ, π, and×”

Relational Algebra – CSc 460 v1.1 (McCann) – p. 11/30

Union (∪) (1 / 2)

• Another binary operator (form: R ∪ S)

• Result contains all tuples of both relations w/o duplicates

Example(s):

“Create a table of the Phoenix and Tucson employee data.”

Relational Algebra – CSc 460 v1.1 (McCann) – p. 12/30

Union (∪) (2 / 2)

To perform R ∪ S, R and S must be union compatible.

Definition: Union Compatible

Example(s):

Relational Algebra – CSc 460 v1.1 (McCann) – p. 13/30

Difference (−) (1 / 2)

• Do you remember this one from basic sets?

{a, b, c, d, e, f} − {b, d, f, h} = {a, c, e}

• Yet another binary operator (form: R− S)

• Result is a relation of tuples from R that are not also in S

• Note that R and S must be union compatible

Relational Algebra – CSc 460 v1.1 (McCann) – p. 14/30

Difference (−) (2 / 2)

Example(s):

X s t

a 12

m 4

e 6

Y u v

e 6

a 16

f 4

Relational Algebra – CSc 460 v1.1 (McCann) – p. 15/30

The Derived Operators

– Intersection (∩)

– Join (⊲⊳)

– Division (÷)

Relational Algebra – CSc 460 v1.1 (McCann) – p. 16/30

Intersection (∩) (1 / 2)

• YABO — Yet Another Binary Operator! (form: R ∩ S)

• Resulting relation has the tuples that appear in both operand

relations

• As with difference, R and S must be union compatible

Relational Algebra – CSc 460 v1.1 (McCann) – p. 17/30

Intersection (∩) (2 / 2)

Example(s):

X s t

a 12

m 4

e 6

Y u v

e 6

a 16

f 4

X ∩ Y s t

e 6

Relational Algebra – CSc 460 v1.1 (McCann) – p. 18/30

Join (⊲⊳) (1 / 3)

• YABO! (form: R ⊲⊳condition S)

• Join is used to exploit PK–FK connections

(using it with other attributes is unwise!)

Relational Algebra – CSc 460 v1.1 (McCann) – p. 19/30

Join (⊲⊳) (2 / 3)

Example(s):

What are the names of the parts that can be supplied

by individual suppliers in quantity > 200?

Without ⊲⊳ : πpname(σqty>200(σSP.P#=P.P#(SP× P)))

With ⊲⊳ :

Relational Algebra – CSc 460 v1.1 (McCann) – p. 20/30

Join (⊲⊳) (3 / 3)

Three join variations:

1. Theta Join: r ⊲⊳θ s

2. Equijoin: r ⊲⊳θ s

3. Natural Join: r ⊲⊳ s ≡ πR∪S(r ⊲⊳ r.a1=s.a1∧ r.a2=s.a2∧ ... s)

where R and S are the attribute sets of r and s, respectively

Relational Algebra – CSc 460 v1.1 (McCann) – p. 21/30

Division (÷) (1 / 9)

Let α and β be relations, where A−B is the set difference of the

attributes of α & β

Definition of Relational Division:

Relational Algebra – CSc 460 v1.1 (McCann) – p. 22/30

Division (÷) (2 / 9)

Let’s review multiplication and division of integers:

Ex: 4 ∗ 6 = 24, so 24/6 = 4 and 24/4 = 6.

Now, consider Cartesian Product and Division with relations:

M c

4

8

N d

3

1

7

M× N = O c d

4 3

4 1

4 7

8 3

8 1

8 7

Relational Algebra – CSc 460 v1.1 (McCann) – p. 23/30

Division (÷) (3 / 9)

What purpose does Division serve?

Example(s):

Recall: S S# Sname Status City

P P# Pname Color Weight City

SP S# P# Qty

Relational Algebra – CSc 460 v1.1 (McCann) – p. 24/30

Division (÷) (4 / 9)

Example(s):

α÷β = πA-B(α)−πA-B((πA-B(α)×β)−α)

(Find the S#s of the suppliers

that supply all parts of weight = 17)(continued)

“Find the X . . . ” ← X is S# (the matches we want)

“. . . matched w/ all Y” ← Y is the set of weight 17 P#s

Next, create the dividend (α) and divisor (β) relations:

Relational Algebra – CSc 460 v1.1 (McCann) – p. 25/30

Division (÷) (5 / 9)

Example(s): (continued)

The content of α and β:

Do any suppliers supply ALL
of β ’s parts?

α S# P#

S1 P1

S2 P3

S2 P5

S3 P3

S3 P4

S4 P6

S5 P1

S5 P2

S5 P3

S5 P4

S5 P5

S5 P6

β P#

P2

P3

Relational Algebra – CSc 460 v1.1 (McCann) – p. 26/30

Division (÷) (6 / 9)

Let’s examine the definition in detail:

α÷ β = π
S#
(α)− π

S#
((π

S#
(α)× β)− α)

Relational Algebra – CSc 460 v1.1 (McCann) – p. 27/30

Division (÷) (7 / 9)

Looking at the data should help, too:

πS#(α)× β S# P#

S1 P2

S1 P3

S2 P2

S2 P3

S3 P2

S3 P3

S4 P2

S4 P3

S5 P2

S5 P3

α S# P#

S1 P1

S2 P3

S2 P5

S3 P3

S3 P4

S4 P6

S5 P1

S5 P2

S5 P3

S5 P4

S5 P5

S5 P6

(πS#(α)× β)− α S# P#

S1 P2

S1 P3

S2 P2

S3 P2

S4 P2

S4 P3

Relational Algebra – CSc 460 v1.1 (McCann) – p. 28/30

Division (÷) (8 / 9)

And so, finally, we have our answer:

πS#(α) S#

S1

S2

S3

S4

S5

πS#((πS#(α)× β)− α) S#

S1

S2

S3

S4

α÷ β = πS#(α)− πS#((πS#(α)× β)− α) = S#

S5

Supplier S5 supplies all parts of weight 17 (P2 and P3).

Relational Algebra – CSc 460 v1.1 (McCann) – p. 29/30

Division (÷) (9 / 9)

Is there a short-cut to avoid that mess? NO!

Consider this very similar query:

Find the S#s of the suppliers that supply

all parts of weight = 19.

The only weight = 19 part is P6, which this simple

expression produces: πS#(α ⊲⊳P# β) (→ S4 and S5)

But, when weight = 17, that query gives S2, S3, and S5!

Relational Algebra – CSc 460 v1.1 (McCann) – p. 30/30

	Topic 7:
	Background
	Relational Operators (1 / 2)
	Relational Operators (2 / 2)
	The Fundamental Operators
	Select ($sigma $, sigma)
(1 / 2)
	Select ($sigma $, sigma)
(2 / 2)
	Project ($pi $, pi)
(1 / 2)
	Project ($pi $, pi)
(2 / 2)
	Cartesian Product ($	imes $)
(1 / 2)
	Cartesian Product ($	imes $)
(2 / 2)
	Union ($cup $)
(1 / 2)
	Union ($cup $)
(2 / 2)
	Difference ($-$)
(1 / 2)
	Difference ($-$)
(2 / 2)
	The Derived Operators
	Intersection ($cap $)
(1 / 2)
	Intersection ($cap $)
(2 / 2)
	Join ($�owtie $)
(1 / 3)
	Join ($�owtie $)
(2 / 3)
	Join ($�owtie $)
(3 / 3)
	Division ($div $)
(1 / 9)
	Division ($div $)
(2 / 9)
	Division ($div $)
(3 / 9)
	Division ($div $)
(4 / 9)
	Division ($div $)
(5 / 9)
	Division ($div $)
(6 / 9)
	Division ($div $)
(7 / 9)
	Division ($div $)
(8 / 9)
	Division ($div $)
(9 / 9)

