# Relational Algebra 

## Background

- Introduced by Codd (along with the Tuple Relational Calculus)
- Relational Algebra ... :
- Is procedural, like most programming languages
- we need to supply an ordering of operations
- Would not be a good replacement for SQL in a DBMS
- Is a good introduction to the operators provided by SQL


## Relational Operators (1 / 2)

Relations are closed under Relational Algebra operators

- That is, they accept relations as operands, and produce relations as results.
- Example: Integers are closed under + and - .

The eight basic Relational Algebra operators are:

| $\times$ | $\bowtie$ |
| :---: | :---: |
| - | $\pi$ |
| $\div$ | $\sigma$ |
| $\cap$ | $\cup$ |

## Relational Operators (2 / 2)

The eight Relational Algebra operators can be grouped in two ways:

1. Set vs. Relational:

- Set: $\cup, \cap,-, \times, \div$
- Relational: $\sigma, \pi, \bowtie$

2. Fundamental vs. Derived:

- Fundamental: $\sigma, \pi, \times, \cup,-$
- Derived: $\cap, \bowtie, \div$

The Fundamental Operators

- Select ( $\sigma$ )
- Project ( $\pi$ )
- Cartesian Product ( $\times$ )
- Union ( $\cup$ )
- Difference (-)


## Select ( $\sigma$, sigma) (1/2)

- A unary (single argument) operator
- Chooses full tuples from a relation based on a condition
- Form:


## Example(s):

List all information of the employees in department \#5:

Who are the active suppliers in Paris?

## Select ( $\sigma$, sigma) (2 / 2)

Notes:

- Conditions may be as complex as is necessary
- Select is commutative:

$$
\sigma_{A}\left(\sigma_{B}(\mathrm{r})\right) \equiv \sigma_{B}\left(\sigma_{A}(\mathrm{r})\right)
$$

- Cascades of selects $\equiv$ conjunction in a single select:

$$
\sigma_{A}\left(\sigma_{B}\left(\sigma_{C}(\mathrm{r})\right)\right) \equiv \sigma_{A \wedge B \wedge C}(\mathrm{r})
$$

## Project ( $\pi$, pi) (1 / 2)

Pronunciation: PRO-ject (not pro-JECT, not PRAH-ject)

- Also a unary operator
- Chooses named columns from a relation
- Resulting group of tuples may include duplicates...
- ... which we drop to preserve entity integrity
- Form:

Example(s):
Find the names \& salaries of the employees in department 5:

Alternatively:

## Cartesian Product (X) (1/2)

- A binary operator (form: $\mathrm{R} \times \mathrm{S}$ )
- 'Marries' all pairings of tuples from the given relations
- resulting cardinality $=\operatorname{card}(R) \cdot \operatorname{card}(S)$
- resulting degree $=\operatorname{degree}(R)+\operatorname{degree}(S)$


## Example(s):

A | $\underline{m}$ | n |
| :---: | :---: |
| 2 | i |
| 3 | iv |
| 7 | x |

B

| $\mathbf{o}$ | $\underline{p}$ |
| :---: | :---: |
| 3 | $\beta$ |
| 7 | $\alpha$ |

## Cartesian Product (×) (2 / 2)

## Example(s):

## What are the names of the active suppliers of nuts?

The complete query:

$$
\pi_{\text {Sname }}\left(\sigma_{\text {Status }>0 \wedge \text { Pname='Nut' }}\left(\sigma_{\text {S.S\# }}=\text { SP.S\# }\left(\sigma_{\text {SP.P\# }=\text { P.P\# }}(S \times(S P \times P))\right)\right)\right.
$$

For a visualization of this query step-by-step with sample data, see the handout:
"Examples of the Relation Algebra Operations $\sigma, \pi$, and $\times$ "

## Union (U) (1 / 2)

- Another binary operator (form: $\mathrm{R} \cup \mathrm{S}$ )
- Result contains all tuples of both relations w/o duplicates


## Example(s):

"Create a table of the Phoenix and Tucson employee data."

## Union (U) (2 / 2)

To perform $R \cup S, R$ and $S$ must be union compatible.
Definition: Union Compatible
$\square$

## Example(s):

## Difference (-) (1 / 2)

- Do you remember this one from basic sets?
$\{a, b, c, d, e, f\}-\{b, d, f, h\}=\{a, c, e\}$
- Yet another binary operator (form: $\mathrm{R}-\mathrm{S}$ )
- Result is a relation of tuples from R that are not also in S
- Note that R and S must be union compatible

Difference (-) (2 / 2)
Example(s):

$\left.$| $X$ | s |
| :---: | :---: |
| t |  |
| a | 12 |
| m | $\mathbf{4}$ |
| e | 6 |$\quad \mathrm{Y} \right\rvert\,$| u | v |
| :---: | :---: |
| e | 6 |
| a | 16 |
| f | 4 |

## The Derived Operators

- Intersection ( $\cap$ )
- Join (®)
- Division ( $\div$ )
- YABO - Yet Another Binary Operator! (form: $\mathrm{R} \cap \mathrm{S}$ )
- Resulting relation has the tuples that appear in both operand relations
- As with difference, $R$ and $S$ must be union compatible


## Intersection ( $\cap$ ) (2 / 2)

## Example(s):

| $X$ | s |
| :---: | :---: |
| t |  |
| a | 12 |
| m | 4 |
| e | 6 |$\quad \mathrm{Y}$| $u$ | $v$ |
| :---: | :---: |
| e | 6 |
| a | 16 |
| f | 4 |$\quad \mathrm{X} \cap \mathrm{Y}$| s | t |
| :---: | :---: |
| e | 6 |

Join $(\bowtie)(1 / 3)$

- YABO! (form: $\mathrm{R} \bowtie_{\text {condition }} \mathrm{S}$ )
- Join is used to exploit PK-FK connections
(using it with other attributes is unwise!)


## Join (®) (2 / 3)

## Example(s):

What are the names of the parts that can be supplied by individual suppliers in quantity $>\mathbf{2 0 0}$ ?

$$
\text { Without } \bowtie: \quad \pi_{\text {pname }}\left(\sigma_{\text {qty }>200}\left(\sigma_{\text {SP.P\# } \# \text { P.P\# }}(\mathrm{SP} \times \mathrm{P})\right)\right)
$$

With $\bowtie$ :

Join $(\bowtie)(3 / 3)$
Three join variations:

1. Theta Join: $r \bowtie_{\theta} s$
2. Equijoin: $r \bowtie_{\theta} s$
3. Natural Join: $r \bowtie s \equiv \pi_{\text {RUs }}\left(r \bowtie_{\text {r.a1 }=s . a 1 \wedge r . a 2=s . a 2 \wedge \ldots s)}\right.$ where $R$ and $S$ are the attribute sets of $r$ and $s$, respectively

## Division $(\div)(1 / 9)$

Let $\alpha$ and $\beta$ be relations, where $A-B$ is the set difference of the attributes of $\alpha \& \beta$

## Definition of Relational Division:

## Division $(\div)(2 / 9)$

Let's review multiplication and division of integers:
Ex: $4 * 6=24$, so $24 / 6=4$ and $24 / 4=6$.
Now, consider Cartesian Product and Division with relations:


$$
M \times N=O \begin{array}{|c|c|}
\hline c & d \\
\hline 4 & 3 \\
4 & 1 \\
4 & 7 \\
8 & 3 \\
8 & 1 \\
8 & 7 \\
\hline
\end{array}
$$

## Division ( $\div$ ) (3 / 9)

## What purpose does Division serve?

## Example(s):

Recall: s s | s\# | Sname | Status | City |
| :--- | :--- | :--- | :--- |

| P | P\# | Pname | Color | Weight | City |
| :--- | :--- | :--- | :--- | :--- | :--- |

Division $(\div)(4 / 9) \quad \alpha \div \beta=\pi_{\mathrm{AB}}(\alpha)-\pi_{\mathrm{A} \cdot \mathrm{B}}\left(\left(\pi_{\mathrm{AB}}(\alpha) \times \beta\right)-\alpha\right)$
(Find the S\#s of the suppliers
Example(s): (continued) $\quad \begin{aligned} & \text { that supply all parts of weight }=17 \text { ) }\end{aligned}$
"Find the $\mathrm{X} \ldots$ " $\leftarrow \mathrm{X}$ is S \# (the matches we want)
". . . matched $w /$ all $Y$ " $\leftarrow Y$ is the set of weight 17 P\#s
Next, create the dividend ( $\alpha$ ) and divisor ( $\beta$ ) relations:

## Division ( $\div$ ) (5 / 9)

## Example(s): (continued)

The content of $\alpha$ and $\beta$ :
$\alpha$

| S\# | P\# |
| :--- | :--- |
| S1 | P1 |
| S2 | P3 |
| S2 | P5 |
| S3 | P3 |
| S3 | P4 |
| S4 | P6 |
| S5 | P1 |
| S5 | P2 |
| S5 | P3 |
| S5 | P4 |
| S5 | P5 |
| S5 | P6 |


$\beta$| $\mathrm{P} \#$ |
| :--- |
| P 2 |
| P 3 |

Do any suppliers supply ALL of $\beta$ 's parts?

Division $(\div)(6 / 9)$
Let's examine the definition in detail:

$$
\alpha \div \beta=\pi_{\mathrm{s} \#}(\alpha)-\pi_{\mathrm{s} \#}\left(\left(\pi_{\mathrm{s} \#}(\alpha) \times \beta\right)-\alpha\right)
$$

## Division ( $\div$ ) (7 / 9)

Looking at the data should help, too:

$\pi_{\mathrm{S} \#}(\alpha) \times \beta$|  | $\mathrm{S} \#$ |
| :---: | :---: |
| $\mathrm{P} \#$ |  |
|  | S 1 |
| P 2 |  |
| S 1 | P 3 |
|  | S 2 |
| P 2 | P 2 |
| S 2 | P 3 |
| S 3 | P 2 |
| S 3 | P 3 |
| S 4 | P 2 |
| S 4 | P 3 |
| S 5 | P 2 |
| S 5 | P 3 |


$\alpha$| $\mathrm{S} \#$ | $\mathrm{P} \#$ |
| :--- | :--- |
| S 1 | P 1 |
| S 2 | P 3 |
| S 2 | P 5 |
| S 3 | P 3 |
| S 3 | P 4 |
| S 4 | P 6 |
| S5 | P 1 |
| S5 | P 2 |
| S5 | P 3 |
| S5 | P 4 |
| S5 | P 5 |
| S5 | P 6 |


$\left(\pi_{\mathrm{s} \#}(\alpha) \times \beta\right)-\alpha$| $\mathrm{S} \#$ | $\mathrm{P} \#$ |
| :--- | :--- |
|  | S 1 |
| P 2 |  |
| S 1 | P 3 |
| S 2 | P 2 |
| S 3 | P 2 |
| S 4 | P 2 |
| S 4 | P 3 |

## Division $(\div)(8 / 9)$

And so, finally, we have our answer:

| $\pi_{\text {S\# }}(\alpha)$ | S\# | $\pi_{\text {S\# }}\left(\left(\pi_{\text {S\# }}(\alpha) \times \beta\right)-\alpha\right)$ | S\# |
| :---: | :---: | :---: | :---: |
|  | S1 |  | S1 |
|  | S2 |  | S2 |
|  | S3 |  | S3 |
|  | S4 |  | S4 |
|  | S5 |  |  |

$$
\alpha \div \beta=\pi_{\mathrm{S} \#}(\alpha)-\pi_{\mathrm{S} \#}\left(\left(\pi_{\mathrm{S} \#}(\alpha) \times \beta\right)-\alpha\right)=\begin{array}{|c|}
\mathrm{S} \# \\
\hline \mathrm{~S} 5 \\
\hline
\end{array}
$$

Supplier S5 supplies all parts of weight 17 (P2 and P3).

## Division $(\div)(9 / 9)$

Is there a short-cut to avoid that mess? NO!
Consider this very similar query:

Find the S\#s of the suppliers that supply
all parts of weight $=19$.
The only weight = 19 part is P 6 , which this simple
expression produces: $\quad \pi_{\mathrm{S} \#}\left(\alpha \bowtie_{\mathrm{p} \#} \beta\right)(\rightarrow \mathrm{S} 4$ and S 5$)$

But, when weight $=17$, that query gives $\mathrm{S} 2, \mathrm{~S} 3$, and S 5 !

