
Topic 9:

SQL in Applications

SQL in Applications – CSc 460 v1.1 (McCann) – p. 1/14

Classic Approaches

1. Use a preprocessor

• Usually for older languages (e.g., C and C++)

• I’ll show an example or two of this, just for context

2. Use a library (API)

• Usually the only option for languages with APIs

• Often several options per language

SQL in Applications – CSc 460 v1.1 (McCann) – p. 2/14



The Preprocessor Approach (1 / 2)

A common C program line: #include <stdio.h>

But that is not C; rather, it’s a .

A preprocessor can be used to expand DBMS commands,

thus saving us coding:

1. Insert preprocessor statements into program code

2. Execute the DBMS’ preprocessor

3. Compile & link the program

4. Execute the application

SQL in Applications – CSc 460 v1.1 (McCann) – p. 3/14

The Preprocessor Approach (2 / 2)

Two varieties of preprocessed SQL statements:

1. Embedded SQL

– SQL statements are hard–coded (static)

2. Dynamic SQL

– Arguments added to an SQL statement shell

SQL in Applications – CSc 460 v1.1 (McCann) – p. 4/14



Cursors

A Problem:

How large will your query’s result be?

(That is, how much memory do we need to hold

what the DBMS is going to return to us?)

The Solution:

SQL in Applications – CSc 460 v1.1 (McCann) – p. 5/14

Preprocessor Examples

See the Sample C & Postgres programs on class webpage!

“Embedded and Dynamic SQL APIs in Postgres”

Advantage:

• Can be adapted to any programming language

Disadvantages:

• Several preprocessor directives to learn.

• Very little abstraction (e.g., cursors are explicit)

SQL in Applications – CSc 460 v1.1 (McCann) – p. 6/14



The Library Approach

Advantage:

• Just another API; use it like any other API

Disadvantage:

• Might be a 3rd party add–on; needs to be installed

SQL in Applications – CSc 460 v1.1 (McCann) – p. 7/14

ODBC vs. JDBC

ODBC:

• An early 1990s Microsoft API to connect C programs to DBMSes

• ODBC stands for “Open Database Connectivity”

• Recently (2018) updated by Microsoft to support hierarchical

and semistructured data

JDBC:

• Sun Microsystem’s (now Oracle’s) 1997 Java API based on ODBC

• JDBC stands for . . .

SQL in Applications – CSc 460 v1.1 (McCann) – p. 8/14



JDBC

Core capabilities:

Some related technologies:

• SQLJ — a preprocessor–based Java language extension

• Java Persistence API (JPA) — supplies object persistence

• Java Data Objects (JDO) — ditto

SQL in Applications – CSc 460 v1.1 (McCann) – p. 9/14

Using JDBC (1 / 4)

1. Establish connection to a data source

(a) import java.sql.*

(b) Load the driver (names vary by DBMS)

• Add your DBMS’ JAR file to your classpath:

– Oracle 11 via lectura: ojdbc8.jar

• Call Class.forName() to initialize the driver class:

– Oracle 11: oracle.jdbc.OracleDriver

SQL in Applications – CSc 460 v1.1 (McCann) – p. 10/14



Using JDBC (2 / 4)

(c) Connect to the DBMS

Connection dbConnect = DriverManager.getConnection (

"jdbc:oracle:thin:@host.foo.bar.com:1234:oracle",

"username", "password" );

where:

• The first argument is the DB URL. Parts:

◦ thin is the type of driver

◦ host.foo.bar.com is the DBMS server

◦ 1234 is the port number

◦ oracle is the sid (system ID)

• username is the user’s DBMS login

• password is the user’s DBMS password

SQL in Applications – CSc 460 v1.1 (McCann) – p. 11/14

Using JDBC (3 / 4)

2. Send SQL statements to that source

Create a Statement object:

Statement stmt = dbConnect.createStatement();

Ask it to execute the SQL query:

ResultSet answer = stmt.executeQuery (

"SELECT sno, status FROM s" );

↑

NOTE: No semicolon after the query!

SQL in Applications – CSc 460 v1.1 (McCann) – p. 12/14



Using JDBC (4 / 4)

3. Process returned results and messages

JDBC uses cursors, too, but the details are implicit.

Before the first read, test answer.next():

If true, a tuple is available

Then, fetch field values by type. E.g.:

answer.getString("sno")

answer.getInt("status")

SQL in Applications – CSc 460 v1.1 (McCann) – p. 13/14

Accessing MetaData with JDBC

First, get a ResultSetMetaData object by calling:

rsmd = answer.getMetaData()

Then, fetch the metadata you want to see. E.g.:

rsmd.getColumnCount() returns degree

rsmd.getColumnName() returns attr. name

rsmd.getColumnDisplaySize() returns width

A final ‘FYI’: To get a result’s cardinality, call in sequence:

answer.last() moves to last tuple

answer.getRow() to get current row number

SQL in Applications – CSc 460 v1.1 (McCann) – p. 14/14


	Topic 9:
	Classic Approaches
	The Preprocessor Approach (1 / 2)
	The Preprocessor Approach (2 / 2)
	Cursors
	Preprocessor Examples
	The Library Approach
	ODBC vs. JDBC
	JDBC
	Using JDBC (1 / 4)
	Using JDBC (2 / 4)
	Using JDBC (3 / 4)
	Using JDBC (4 / 4)
	Accessing MetaData with JDBC

