Functional Dependencies

Key distinction between relationships and functional dependencies:

- Relationships are between relations
- Functional Dependencies are between attributes
 (usually within the same relation)
Example(s):

UA Campus Buildings:

<table>
<thead>
<tr>
<th>UABUILDINGS</th>
<th>Building#</th>
<th>BuildingName</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>77</td>
<td>Gould-Simpson</td>
<td>1040 E. 4th St.</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>Biological Sciences West</td>
<td>1041 E. Lowell St.</td>
</tr>
</tbody>
</table>

Appropriate FDs:
- Building# \rightarrow BuildingName
- Building# \rightarrow Address

Inappropriate FDs:
-
-

Functional Determination (1 / 3)

Definition: Functional Determination
Consider this relation:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>DAbbrev</th>
<th>DName</th>
<th>DOffice</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Phil</td>
<td>CSc</td>
<td>Computer Science</td>
<td>G-S 917</td>
</tr>
<tr>
<td>4</td>
<td>Lisa</td>
<td>CSc</td>
<td>Computer Science</td>
<td>G-S 917</td>
</tr>
<tr>
<td>5</td>
<td>Steve</td>
<td>Math</td>
<td>Mathematics</td>
<td>Math 108</td>
</tr>
<tr>
<td>13</td>
<td>Bob</td>
<td>CSc</td>
<td>Computer Science</td>
<td>G-S 917</td>
</tr>
<tr>
<td>14</td>
<td>Pat</td>
<td>Math</td>
<td>Mathematics</td>
<td>Math 108</td>
</tr>
</tbody>
</table>

Appropriate FD examples (due to functional behaviors):

-
-
-

Inappropriate FD Examples (non–functional behaviors):

-
-

Consider this relation one more time:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>DAbbrev</th>
<th>DName</th>
<th>DOffice</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Phil</td>
<td>CSc</td>
<td>Computer Science</td>
<td>G-S 917</td>
</tr>
<tr>
<td>4</td>
<td>Lisa</td>
<td>CSc</td>
<td>Computer Science</td>
<td>G-S 917</td>
</tr>
<tr>
<td>5</td>
<td>Steve</td>
<td>Math</td>
<td>Mathematics</td>
<td>Math 108</td>
</tr>
<tr>
<td>13</td>
<td>Bob</td>
<td>CSc</td>
<td>Computer Science</td>
<td>G-S 917</td>
</tr>
<tr>
<td>14</td>
<td>Pat</td>
<td>Math</td>
<td>Mathematics</td>
<td>Math 108</td>
</tr>
</tbody>
</table>

Inappropriate FD Examples (non–functional behaviors):

-
-

The Utility of Functional Dependencies

Why are functional dependencies important? They:

Closure of Attribute Sets (1 / 3)

Definition: Closure (of a set of attributes)
Closure of Attribute Sets (2 / 3)

The Closure Algorithm for Attribute Sets:

Given: \(A \) (the set of attributes we wish to close)
\(F \) (the set of existing FDs)

Returns: \(A^+ \) (the closure of \(A \))

Example(s): Consider the six attributes \(U, V, W, X, Y, Z \) and the FDs \(Z \rightarrow Y X, V \rightarrow XU, Y \rightarrow V, \) and \(XW \rightarrow VU \). Find the closure of \(ZY (= \{ Z, Y \}) \).

<table>
<thead>
<tr>
<th>FD</th>
<th>ZY⁺</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closure of Attribute Sets (3 / 3)
Identifying Important Functional Dependencies

1. List the ‘easy’ FDs.
 - Some are obvious (e.g., Primary Key → all attrs)
 - Context provides others (e.g., \{Dabbrev\} → \{Dname\})

2.

3.

Closure of Functional Dependencies (1 / 2)

From closures of attribute sets, we move to closures of FDs.

Definition: Closure (of a set of FDs)
Example(s):

Consider this odd schema:

<table>
<thead>
<tr>
<th>S#</th>
<th>P#</th>
<th>City</th>
<th>Qty</th>
</tr>
</thead>
</table>

Clearly \(\{S\#, P\#\} \rightarrow \{\text{City}\} \) and \(\{S\#, P\#\} \rightarrow \{\text{Qty}\} \).

Armstrong’s Axioms
(a.k.a. FD Inference Rules)

Additional Inference Rules (1 / 2)

(Remember: These are not Armstrong's Axioms!)

Additional Inference Rules (2 / 2)

As rules 4-8 aren’t fundamental, we can prove their validity using Armstrong’s Axioms.

Example(s): Prove Union: If \(J \rightarrow K \) and \(J \rightarrow L \), then \(J \rightarrow KL \).
Covers of Functional Dependencies (1 / 2)

Covers are essentially the opposite of closures.

![Diagram showing Closure ("Explosion") and Minimal Cover ("Implosion")](image)

Covers of Functional Dependencies (2 / 2)

How many FDs do we need to maintain? (Answer: A minimal cover!)

Definition: Covers (of sets of FDs)

Definition: Equivalence (of sets of FDs)
Minimal Sets of FDs

(Remember, we're working toward a minimal cover)

Definition: Minimal Sets (of FDs)

A set of FDs is minimal if all three of the following hold:

1.
2.
3.

Minimal Covers of FDs

With a minimal set of FDs defined, the definition of a minimal cover is easy.

Definition: Minimal Cover (of a set of FDs)
FD Minimal Cover Algorithm (1 / 4)

First, a high–level outline of the algorithm:

[Given: \(MC \), a set of FDs whose minimal cover we wish to find.]

1. For each FD \(f \in MC \), put \(f \) in Standard Form
 — That is, minimize \(f \)'s RHS (right–hand side)
2. For each FD \(f \in MC \), minimize \(f \)'s LHS (left–hand side)
3. For each FD \(f \in MC \), delete \(f \) if it is redundant

FD Minimal Cover Algorithm (2 / 4)

And now the details!

1. For each FD \(f \in MC \), put \(f \) in Standard Form.
2. For each FD $f \in MC$, minimize f’s LHS, using this algorithm:

3. For each FD $f \in MC$, delete f if it is redundant, using this algorithm:
Example(s):

Attributes: \(E, F, G, H \)
Initially, \(MC = \{ E \rightarrow FG, F \rightarrow G, E \rightarrow F, EF \rightarrow G, EG \rightarrow H \} \)

Question: What is a minimal cover of this set of FDs?

1. For each FD \(f \in MC \), put \(f \) in Standard Form.

 \(\Rightarrow \) Only \(E \rightarrow FG \) is not in Standard Form

Minimal Cover Example (2 / 4)

Example(s):

2. For each FD \(f \in MC \), minimize \(f \)'s LHS.

 \(\Rightarrow \) Two candidates: \(EF \rightarrow G \) and \(EG \rightarrow H \).

(a) Consider \(EF \rightarrow G \):
Example(s):

2. For each FD \(f \in MC \), minimize \(f \)'s LHS (continued).

 (b) Consider \(EG \rightarrow H \):

Example(s):

3. For each FD \(f \in MC \), delete \(f \) if it is redundant.

 \[\Rightarrow \text{Consider } E \rightarrow G. \]