Functional Dependencies

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 1/28

Functional Dependencies (1 / 2)

Key distinction between relationships and functional dependencies:

- Relationships are between <u>relations</u>
- Functional Dependencies are between <u>attributes</u> (usually within the same relation)

Functional Dependencies (2 / 2)

Example(s):

UA Campus Buildings:					
UABUILDINGS	Building#	ding# BuildingName Address			
	77	Gould-Simpson	1040 E. 4th St.		
	88	Biological Sciences West	1041 E. Lowell St.		
Appropriate FDs:					
 Building# → BuildingName Building# → Address 					
Inappropriate FDs:					
•					
•					
	UABUILDINGS ppropriate FDs: Building# \rightarrow Building# \rightarrow A	UABUILDINGSBuilding#7788ppropriate FDs:Building# \rightarrow BuildingNaBuilding# \rightarrow Address	UABUILDINGSBuilding#BuildingName77Gould-Simpson88Biological Sciences Westppropriate FDs:Building# \rightarrow BuildingNameBuilding# \rightarrow Address		

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 3/28

Functional Determination (1 / 3)

Definition: Functional Determination

Functional Determination (2 / 3)

Consider this relation:

ld	Name	DAbbrev	DName	DOffice
2	Phil	CSc	Computer Science	G-S 917
4	Lisa	CSc	Computer Science	G-S 917
5	Steve	Math	Mathematics	Math 108
13	Bob	CSc	Computer Science	G-S 917
14	Pat	Math	Mathematics	Math 108

. . .

Appropriate FD examples (due to functional behaviors):

- •
- •
- -
- •

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 5/28

Functional Determination (3 / 3)

Consider this relation one more time:

Student_Department

ld	Name	DAbbrev	DName	DOffice
2	Phil	CSc	Computer Science	G-S 917
4	Lisa	CSc	Computer Science	G-S 917
5	Steve	Math	Mathematics	Math 108
13	Bob	CSc	Computer Science	G-S 917
14	Pat	Math	Mathematics	Math 108

Inappropriate FD Examples (non-functional behaviors):

- •

The Utility of Functional Dependencies

Why are functional dependencies important? They:

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 7/28

Closure of Attribute Sets (1 / 3)

Definition: Closure (of a set of attributes)

Closure of Attribute Sets (2 / 3)

The Closure Algorithm for Attribute Sets:

- Given: A (the set of attributes we wish to close) F (the set of existing FDs)
- Returns: A^+ (the closure of A)

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 9/28

Closure of Attribute Sets (3 / 3)

Example(s): Consider the six attributes U, V, W, X, Y, Z				
and the FDs $Z \to YX$, $V \to XU$, $Y \to V$,				
and $XW \to VU$. Find the closure of $ZY (= \{Z, Y\})$.				
FD	ZY^+	temp		

Identifying Important Functional Dependencies

1. List the 'easy' FDs.

- Some are obvious (e.g., Primary Key ightarrow all attrs)
- Context provides others (e.g., $\{Dabbrev\} \rightarrow \{Dname\}$)

2.

3.

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 11/28

Closure of Functional Dependencies (1 / 2)

From closures of attribute sets, we move to closures of FDs.

Definition: Closure (of a set of FDs)

Closure of Functional Dependencies (2 / 2)

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 13/28

Armstrong's Axioms (a.k.a. FD Inference Rules)

(Armstrong, W. "Dependency Structures of Data Base Relationships," IFIP Congress, 1974.)

Additional Inference Rules (1 / 2)

(Remember: These are not Armstrong's Axioms!)

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 15/28

Additional Inference Rules (2 / 2)

As rules 4 – 8 aren't fundamental, we can prove their validity using Armstrong's Axioms.

Example(s): Prove Union: If $J \to K$ and $J \to L$, then $J \to KL$.

Covers are essentially the opposite of closures.

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 17/28

Covers of Functional Dependencies (2 / 2)

How many FDs do we need to maintain? (Answer: A minimal cover!)

Definition: Covers (of sets of FDs)

Definition: Equivalence (of sets of FDs)

Minimal Sets of FDs (Remember, we're working toward a *minimial* cover)

Definition: Minimal Sets (of FDs)

A set of FDs is minimal if <u>all three</u> of the following hold:

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 19/28

Minimal Covers of FDs

With a minimal set of FDs defined, the definition of a minimal cover is easy.

Definition: Minimal Cover (of a set of FDs)

FD Minimal Cover Algorithm (1 / 4)

First, a high–level outline of the algorithm:

[Given: MC, a set of FDs whose minimal cover we wish to find.]

- 1. For each FD $f \in MC$, put f in Standard Form — That is, minimize f's RHS (right-hand side)
- 2. For each FD $f \in MC$, minimize f's LHS (left-hand side)
- 3. For each FD $f \in MC$, delete f if it is redundant

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 21/28

FD Minimal Cover Algorithm (2 / 4)

And now the details!

1. For each FD $f \in MC$, put f in Standard Form.

FD Minimal Cover Algorithm (3 / 4)

2. For each FD $f \in MC$, minimize f's LHS, using this algorithm:

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 23/28

FD Minimal Cover Algorithm (4 / 4)

3. For each FD $f \in MC$, delete f if it is redundant,

using this algorithm:

Minimal Cover Example (1 / 4)

Example(s):

Attributes: E, F, G, H

Initially, MC = $\{E \to FG, F \to G, E \to F, EF \to G, EG \to H\}$

Question: What is a minimal cover of this set of FDs?

1. For each FD $f \in MC$, put f in Standard Form.

 \Rightarrow Only $E \rightarrow FG$ is not in Standard Form

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 25/28

Minimal Cover Example (2 / 4)

Example(s):

Minimal Cover Example (3 / 4)

Example(s):

2. For each FD $f \in MC$, minimize f's LHS (continued).

(b) Consider $EG \to H$. Can we form either $E \to H$ or $G \to H$?

Functional Dependencies - CSc 460 v1.1 (McCann) - p. 27/28

Minimal Cover Example (4 / 4)

Example(s):

3. For each FD $f \in MC$, delete f if it is redundant. \Rightarrow Consider $E \rightarrow G$.