## Data Normalization

"At the time, Nixon was normalizing relations with China. I figured that if he could normalize relations, then so could I."

- E.F. Codd


## Motivating Data Normalization

Some key goals of attribute placement within relations:

## Update Anomalies (1/4)

## Recall this relation from Functional Dependencies:

StudentDept

| Id | Name | DAbbrev | DName | DOffice |
| :---: | :---: | :---: | :---: | :---: |
| 2 | Phil | CSc | Computer Science | G-S 917 |
| 4 | Lisa | CSc | Computer Science | G-S 917 |
| 5 | Steve | Math | Mathematics | Math 108 |
| 13 | Bob | CSc | Computer Science | G-S 917 |
| 14 | Pat | Math | Mathematics | Math 108 |

## Problem:

Solution:

## Update Anomalies (2 / 4)

## One Potential Split:

Student_Place

| Name | DOffice |
| :---: | :---: |
| Phil | G-S 917 |
| Lisa | G-S 917 |
| Steve | Math 108 |
| Bob | G-S 917 |
| Pat | Math 108 |

Student_Department

| Id | DAbbrev | DName | DOffice |
| :---: | :---: | :---: | :---: |
| 2 | CSc | Computer Science | G-S 917 |
| 4 | CSc | Computer Science | G-S 917 |
| 5 | Math | Mathematics | Math 108 |
| 13 | CSc | Computer Science | G-S 917 |
| 14 | Math | Mathematics | Math 108 |

## First Question:

## Update Anomalies (3 / 4)

The schema from the last slide:
Student_Place

| Name | DOffice |
| :--- | :--- |$\quad$| Id | DAbbrev | DName | DOffice |
| :--- | :--- | :--- | :--- |

## Second Question:

## Update Anomalies (4 / 4)

Let's try a different split:

| Student |  |  |
| :---: | :---: | :---: |
| Id | Name | Major_Dept |
| 2 | Phil | CSc |
| 4 | Lisa | CSc |
| 5 | Steve | Math |
| 13 | Bob | CSc |
| 14 | Pat | Math |

Department

| Abbreviation | Name | Office |
| :---: | :---: | :---: |
| CSc | Computer Science | G-S 917 |
| Math | Mathematics | Math 108 |

## Review of Functional Dependencies

## Recall:

## Definition: Functional Determination

The set of attributes $X$ functionally determines the set of attributes $Y$ (denoted $X \rightarrow Y$ ) iff whenever any two tuples of the relation agree on their $X$ values, they must also agree on their $Y$ values.

## Normal Forms

The justification for splitting relations is known as ...
Definition: Normalization

## $1^{\text {st }}$ Normal Form (1 / 5)

## Definition: First Normal Form

$\square$
Example(s): Consider this relation:

| Employee |  |  |
| :--- | :--- | :--- |
| EmpID | Name | Children |
|  |  |  |

## $1^{\text {st }}$ Normal Form (2 / 5)

Attempt \#1: Let's try to achieve 1NF by flattening the relation:

| Employee2 |  |  |
| :---: | :---: | :---: |
| EmpID | Name | Child |
| 415 | Joe | Joe Jr. |
| 415 | Joe | Sally |
| 415 | Joe | Peter |
| 667 | Rhonda | Jim Bob |
| 667 | Rhonda | Bobby Ray |

See any problems with this relation?

Attempt \#2: Separate the Employee and Child information:

| Employee3 |  |
| :---: | :---: |
| EmpID | EmpName |
| 415 | Joe |
| 667 | Rhonda |

The Good:

| Child |  |
| :---: | :---: |
| EmpID | ChildName |
| 415 | Joe Jr. |
| 415 | Sally |
| 415 | Peter |
| 667 | Jim Bob |
| 667 | Bobby Ray |

The Bad:

## $1^{\text {st }}$ Normal Form (4 / 5)

Attempt \#3: Give each child a unique identifier:

| Employee3 |  |
| :---: | :---: |
| EmpID | EmpName |
| 415 | Joe |
| 667 | Rhonda | | ChildID | EmpID | ChildName |
| :---: | :---: | :---: | :---: |
| 2 | 415 | Joe Jr. |
| 3 | 415 | Sally |
| 1 | 415 | Peter |
| 5 | 667 | Jim Bob |
| 4 | 667 | Bobby Ray |

## $1^{\text {st }}$ Normal Form (5 / 5)

## Notes:

- Clearly, using names as PKs isn't a good idea!
- By a strict interpretation of the relational model's definition, true relations can't have set-valued attributes (thus making 1NF relations a given)
- However, set-valued attributes are commonly permitted in DBMSes (because they are practical)


## $2^{\text {nd }}$ Normal Form (1/5)

Time to talk about grouping the attributes . . . with FDs!
Definition: Full Functional Dependency

## Definition: Prime Attribute

$2^{\text {nd }}$ Normal Form (2 / 5)
Definition: Second Normal Form (2NF), 1 of 2
$\square$
Example(s):
First
Consider this schema:

| S\# | P\# | City | Status | Qty |
| :--- | :--- | :--- | :--- | :--- |

## $2^{\text {nd }}$ Normal Form (3/5)

## Example(s): (Continued)

Now consider these FDs in First:

$$
\begin{array}{ll}
S \# \rightarrow \text { City } & \{S \#, P \#\} \rightarrow \text { Qty } \\
S \# \rightarrow \text { Status } & \text { City } \rightarrow \text { Status }
\end{array}
$$

Given these FDs, is First in 2NF?

## $2^{\text {nd }}$ Normal Form (4/5)

How can we decompose First into multiple 2NF relations?

## $2^{\text {nd }}$ Normal Form (5 / 5)

An alternate (and more confusing!) 2NF definition:
Definition: Second Normal Form (2NF), 2 of 2
A relation $R$ is in 2NF if, for all FDs in $R$ of the form $X \rightarrow A$ where $A$ is a single non-prime attribute not contained in $X$, $X$ is not contained in a.CK of $R$.
$3^{\text {rd }}$ Normal Form (1/5)
Even with 2NF, we can still have redundancy:
Example(s): Consider F2 again, but with data:

| F2 |  |  |
| :---: | :---: | :---: |
| S\# | City | Status |
| S1 | London | 20 |
| S2 | Paris | 10 |
| S3 | Paris | 10 |
| S4 | London | 20 |

Definition: Trivial Functional Dependency (rem. T12/Reflexivity?)
An FD $X \rightarrow A$ is a trivial FD when $A \subseteq X$.
$\{S \#, P \#\} \rightarrow S \#$ is an FD, but is trivial.

## $3{ }^{\text {rd }}$ Normal Form (2 / 5)

## Definition: Superkey

## Example(s):

Definition: Third Normal Form (3NF), 1 of 2
$3^{\text {rd }}$ Normal Form (3 / 5)
3NF catches the problem with F2:
F2

| S\# | City | Status |
| :---: | :---: | :---: |
| S1 | London | 20 |
| S2 | Paris | 10 |
| S3 | Paris | 10 |
| S4 | London | 20 |

FDs: S\# $\rightarrow$ City, S\# $\rightarrow$ Status, and City $\rightarrow$ Status.

## $3^{\text {rd }}$ Normal Form (4/5)

## We solve this problem with decomposition:

## $3^{\text {rd }}$ Normal Form (5 / 5)

Here's alternate (and not as useful) 3NF definition.
Definition: Third Normal Form (3NF), 2 of 2
A relation $R$ is in 3NF if $R$ is in 2NF and every non-prime attribute of $R$ is non-transitively dependent on every CK of $R$.

## Boyce-Codd Normal Form (BCNF) (1 / 3)

## Definition: Review: 3NF (version 1)

A relation $R$ is in 3NF if, for every non-trivial FD $X \rightarrow A$ that holds in $R$, either (a) $X$ is a superkey of $R$, or (b) $A$ is a prime attribute of $R$.

If we drop (b), the definition becomes more restrictive.
Definition: Boyce-Codd Normal Form

BCNF (2 / 3)

## Example(s):

Consider the schema $\mathrm{R}(\underline{\mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p})}$ with these FDs:
$\{m, n\} \rightarrow o,\{m, n\} \rightarrow p$, and $p \rightarrow n$.
Is this schema in 3NF?

Is this schema in BCNF?

## BCNF (3 / 3)

Notes:

## Summary of FD-Based Normalization

- Create an initial relational design
- Identify the FDs
- Construct a decomposed schema for which:
- Natural joins do not add spurious tuples (a.k.a. The

Non-Additive (or Lossless) Join Property)

- All relations are in at least 3NF
- All FDs are retained or can be reconstructed


## Beyond Functional Dependencies

You're kidding - there are more normal forms?

## Motivating Example (1 / 4)

Consider this schema:
Bookstore

| Course | Professor | Text |
| :---: | :---: | :---: |
| Programming | \{Jones,Smith \} | \{The Java Coloring Book, <br> Java for the Imbecilic $\}$ |
|  |  | Data Structures |
|  | \{Jones \} | The Java Coloring Book, |
|  |  | Boxes + Arrows = Linked Lists, <br> Why Trees Grow Down\}, |

## Motivating Example (2 / 4)

To achieve 1NF, we need to 'flatten' the relation:
Bookstore2

| Course | Professor | Text |
| :---: | :---: | :---: |
| Programming | Jones | The Java Coloring Book |
| Programming | Jones | Java for the Imbecilic |
| Programming | Smith | The Java Coloring Book |
| Programming | Smith | Java for the Imbecilic |
| Data Structures | Jones | The Java Coloring Book |
| Data Structures | Jones | Boxes + Arrows = Linked Lists |
| Data Structures | Jones | Why Trees Grow Down |

Observations about Bookstore2:

Problems with Bookstore2:

## Motivating Example (4 / 4)

Let's try separating teaching from texts:

| Teaches |  |
| :---: | :---: |
| Course Professor <br> Programming Jones <br> Programming Smith <br> Data Structures Jones |  |

Requires

| Course | $\underline{\text { Text }}$ |
| :---: | :---: |
| Programming | The Java Coloring Book |
| Programming | Java for the Imbecilic |
| Data Structures | The Java Coloring Book |
| Data Structures | Boxes + Arrows = Linked Lists <br> Data Structures <br> Why do Trees Grow Down? |

## Multivalued Dependencies (1 / 7)

## We need a new type of dependency!

Definition: Multivalued Dependency (MVD)
Let $A$ be the set of attributes of relation $R$, with $X \subseteq A$ and $Y \subseteq A$. If two tuples $s, t \in R$ have matching $X$ values, then the MVD $X \rightarrow Y$ exists in $R$ when tuples $u$ and $w$ also exist in $R$ such that ...

## Multivalued Dependencies (2 / 7)

Let's apply the definition to a new example.

## Example(s):

| If Student $\rightarrow$ Class, which additional tuples must exist? |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A=$ | $\{X$ <br> Stude | $Y$ <br> Clas | $Z$ <br> TA <br> $\underline{4}$ | The Definition's Conditions: <br> (a) all four tuples have matching $X$ values, <br> (b) $s$ and $u$ have matching $Y$ values, <br> (c) $t$ and $w$ have matching $Y$ values, <br> (d) $s$ and $w$ have matching $A-Y$ values, and <br> (e) $t$ and $u$ have matching $A-Y$ values. |  |
| $S$ | Art | 244 | Kay |  |  |
| $t$ | Art | 337 | Lee |  |  |
| $u$ |  |  |  |  |  |
| $w$ |  |  |  |  |  |

## Multivalued Dependencies (3 / 7)

## Does Bookstore2 contain an MVD?

## Example(s):

Can we identify $s, t, u$, and $w$ for 'Programming'?
Bookstore2 (partial)

| Course | Professor | Text |
| :---: | :---: | :---: |
| Programming | Jones | The Java Coloring Book |
| Programming | Jones | Java for the Imbecilic |
| Programming | Smith | The Java Coloring Book |
| Programming | Smith | Java for the Imbecilic |

## Multivalued Dependencies (4 / 7)

Does Bookstore2 meet the MVD definition? (Continued!)

## Example(s):

But what about the 'Data Structures' tuples?

Bookstore2 (partial)

| Course | Professor | Text |
| :---: | :---: | :---: |
| Data Structures | Jones | The Java Coloring Book |
| Data Structures | Jones | Boxes + Arrows = Linked Lists |
| Data Structures | Jones | Why Trees Grow Down |

## Multivalued Dependencies (5 / 7)

If $X \rightarrow Y$ comes from $Y \times Z$, does $X \rightarrow Z$ also hold?

## Multivalued Dependencies (6 / 7)

This pairing requirement leads to another, quite different, definition of MVDs:

Definition: Multidependency
Let $R$ be a relational schema, and let $X, Y$, and $Z$ be subsets of $R$ 's attributes. $Y$ is multidependent on $X$ (or $X$ multidetermines $Y$ ); denoted $X \rightarrow Y$, iff the set of $Y$ values matching a given $(X, Z)$ pair of values depends only on the $X$ set and is independent of the $Z$ set.

## Multivalued Dependencies (7 / 7)

## Summary:

- MVDs explain a more general kind of redundancy than do FDs.
- Like FDs, MVDs should be designed into a relational schema.
- Neither 1NF, 2NF, 3NF, nor BCNF covers MVDs.

Notes:

## $4^{\text {th }}$ Normal Form (1/3)

Remember trivial FDs?
Definition: Trivial MVDs

At last, a normal form that addresses MVDs:
Definition: Fourth Normal Form (4NF)

## Is our decomposition of Bookstore2 in 4NF?

Teaches

| $\underline{\text { Course }}$ | Professor |
| :---: | :---: |
| Programming | Jones |
| Programming | Smith |
| Data Structures | Jones |

Requires

| Course | Text |
| :---: | :---: |
| Programming | The Java Coloring Book |
| Programming | Java for the Imbecilic |
| Data Structures | The Java Coloring Book |
| Data Structures | Boxes + Arrows = Linked Lists |
| Data Structures | Why do Trees Grow Down? |

(Recall: The MVDs are Course $\rightarrow$ Professor and Course $\rightarrow$ Text)

## $4^{\text {th }}$ Normal Form (3/3)

## Notes:

- How often do non-4NF relations occur?

A study of 40 schemas found $23 \%$ had $\geq 1$ non- 4 NF relation(s).
(Meaning: Stopping at 3NF/BCNF might be stopping too soon!)

- Three time-saving theorems:
- All non-4NF relations can be decomposed into two or more 4NF relations.
- All 4NF relations are also BCNF relations.
- A BCNF relation whose candidate keys are all single attributes is also a 4 NF relation.


## $5^{\text {th }}$ Normal Form (aka Projection-Join N.F.)

Consider (most of) SPJ:


- Because of the redundancies within the three pairs (S\# - P\#, S\# J\#, and P\# - J\#), 5NF says that SPJ should be divided into three relations (SP, SJ, and PJ).
- Practically, doing so isn't efficient (much re-joining is required).
- And there are several other normal forms for even more esoteric problems! (E.g., 6NF, DKNF, Unnormalized Form, ...)


## Normal Form Venn Diagram



