Data Normalization

"At the time, Nixon was normalizing relations with China. I figured that if he could normalize relations, then so could I."

— E.F. Codd

Data Normalization - CSc 460 v1.1 (McCann) - p. 1/44

Motivating Data Normalization

Some key goals of attribute placement within relations:

Related Concerns:

Update Anomalies (1 / 4)

Recall this relation from Functional Dependencies:

ld	Name	DAbbrev	DName	DOffice
2	Phil	CSc	Computer Science	G-S 917
4	Lisa	CSc	Computer Science	G-S 917
5	Steve	Math	Mathematics	Math 108
13	Bob	CSc	Computer Science	G-S 917
14	Pat	Math	Mathematics	Math 108

Problem:

Solution:

Data Normalization - CSc 460 v1.1 (McCann) - p. 3/44

Update Anomalies (2 / 4)

One Potential Split:

Name

Phil

Lisa

Steve

Bob

Pat

Stude	ent_Place		St	udent_Department	
ame	DOffice	ld	DAbbrev	DName	DOffice
Phil	G-S 917	2	CSc	Computer Science	G-S 917
isa	G-S 917	4	CSc	Computer Science	G-S 917
teve	Math 108	5	Math	Mathematics	Math 108
Bob	G-S 917	13	CSc	Computer Science	G-S 917
Pat	Math 108	14	Math	Mathematics	Math 108

First Question:

Update Anomalies (3 / 4)

The schema from the last slide:

Second Question:

Data Normalization - CSc 460 v1.1 (McCann) - p. 5/44

Update Anomalies (4 / 4)

Let's try a different split:

	Stud	dent
ld	Name	Major_Dept
2	Phil	CSc
4	Lisa	CSc
5	Steve	Math
13	Bob	CSc
14	Pat	Math

	Department	
Abbreviation	Name	Office
CSc	Computer Science	G-S 917
Math	Mathematics	Math 108

Review of Functional Dependencies

Recall:

Definition: Functional Determination

The set of attributes X functionally determines the set of attributes Y (denoted $X \to Y$) iff whenever any two tuples of the relation agree on their X values, they must also agree

on their Y values.

Data Normalization - CSc 460 v1.1 (McCann) - p. 7/44

Normal Forms

The justification for splitting relations is known as ...

Definition: Normalization

$1^{\mbox{st}}$ Normal Form (1 / 5)

Definition: First Normal Form

Example(s): Consider this relation:

	E	mployee
EmpID	Name	Children
	I	

Data Normalization - CSc 460 v1.1 (McCann) - p. 9/44

$1^{\rm st}$ Normal Form (2 / 5)

Attempt #1: Let's try to achieve 1NF by *flattening* the relation:

	Employee	e2
EmpID	Name	Child
415	Joe	Joe Jr.
415	Joe	Sally
415	Joe	Peter
667	Rhonda	Jim Bob
667	Rhonda	Bobby Ray

See any problems with this relation?

$1^{\mbox{st}}$ Normal Form (3 / 5)

Attempt #2: Separate the Employee and Child information:

Em	ployee3			Child
EmpID	EmpName		EmpID	ChildName
415	Joe		415	Joe Jr.
667	Rhonda		415	Sally
		J	415	Peter
			667	Jim Bob
			667	Bobby Ray

The Good:

The Bad:

Data Normalization - CSc 460 v1.1 (McCann) - p. 11/44

$1^{\mbox{st}}$ Normal Form (4 / 5)

Attempt #3: Give each child a unique identifier:

Em	ployee3		Child2	
EmpID	EmpName	ChildID	EmpID	ChildName
415 667	Joe Bhonda	2	415 415	Joe Jr.
007	Tinonda	1	415	Peter
		5 4	667 667	Jim Bob Bobby Ray

Notes:

- Clearly, using names as PKs isn't a good idea!
- By a strict interpretation of the relational model's definition, true relations <u>can't</u> have set-valued attributes (thus making 1NF relations a given)
- However, set-valued attributes are commonly permitted in DBMSes (because they are practical)

Data Normalization - CSc 460 v1.1 (McCann) - p. 13/44

$2^{\rm nd}$ Normal Form (1 / 5)

Time to talk about grouping the attributes ... with FDs!

Definition: Full Functional Dependency

Definition: Prime Attribute

2^{nd} Normal Form (2 / 5)

Definition: Second Normal Form (2NF), 1 of 2

Example(s):

Consider this cohomo			Firs	st	
Consider this schema:	<u>S#</u>	<u>P#</u>	City	Status	Qty

Data Normalization - CSc 460 v1.1 (McCann) - p. 15/44

2^{nd} Normal Form (3 / 5)

Example(s): (Continue	ed)
Now consider these F	Ds in First:
$S \# \to \text{City}$	$\{S\#, P\#\} \to \text{Qty}$
$S \# \to \text{Status}$	$City \rightarrow Status$
Given these FDs, is Firs	st in 2NF?

2^{nd} Normal Form (4 / 5)

How can we decompose First into multiple 2NF relations?

Data Normalization - CSc 460 v1.1 (McCann) - p. 17/44

$2^{\rm nd}$ Normal Form (5 / 5)

An alternate (and more confusing!) 2NF definition:

Definition: Second Normal Form (2NF), 2 of 2

A relation R is in 2NF if, for all FDs in R of the form $X \to A$
where A is a single non-prime attribute <u>not contained in</u> X ,
X is <u>not contained in</u> a CK of R .

3^{rd} Normal Form (1 / 5)

Even with 2NF, we can still have redundancy:

Example(s): Consider F2 again, but with data:

_	F2		
<u>S#</u>	City	Status	
S1	London	20	
S2	Paris	10	
S3	Paris	10	
S4	London	20	

Definition: Trivial Functional Dependency (rem. T12/Reflexivity?)

An FD $X \to A$ is a <u>trivial</u> FD when $A \subseteq X$.

Example: $\{S\#, P\#\} \rightarrow S\#$ is an FD, but is trivial.

Data Normalization - CSc 460 v1.1 (McCann) - p. 19/44

 3^{rd} Normal Form (2 / 5)

Definition: Superkey

Example(s):

Definition: Third Normal Form (3NF), 1 of 2

3^{rd} Normal Form (3 / 5)

3NF catches the problem with F2:

F2				
<u>S#</u>	City	Status		
S1	London	20		
S2	Paris	10		
S3	Paris	10		
S4	London	20		

FDs: S# \rightarrow City, S# \rightarrow Status, and City \rightarrow Status.

Data Normalization - CSc 460 v1.1 (McCann) - p. 21/44

3^{rd} Normal Form (4 / 5)

We solve this problem with decomposition:

3rd Normal Form (5 / 5)

Here's alternate (and not as useful) 3NF definition.

Definition: Third Normal Form (3NF), 2 of 2

A relation R is in 3NF if R is in 2NF and every non-prime attribute of R is non-transitively dependent on every CK of R.

Data Normalization - CSc 460 v1.1 (McCann) - p. 23/44

Boyce-Codd Normal Form (BCNF) (1 / 3)

Definition: Review: 3NF (version 1)

A relation R is in 3NF if, for every non-trivial FD $X \to A$ that holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R.

If we drop (b), the definition becomes more restrictive.

Definition: Boyce-Codd Normal Form

BCNF (2 / 3)

Example(s):

Consider the schema R(m,n,o,p) with these FDs:

 $\{m,n\} \rightarrow o, \{m,n\} \rightarrow p, \text{ and } p \rightarrow n.$

Is this schema in 3NF?

Is this schema in BCNF?

Data Normalization – CSc 460 v1.1 (McCann) – p. 25/44

BCNF (3 / 3)

Notes:

Summary of FD-Based Normalization

- Create an initial relational design
- Identify the FDs
- Construct a decomposed schema for which:
 - Natural joins do not add spurious tuples (a.k.a. The Non-Additive (or Lossless) Join Property)
 - All relations are in at least 3NF
 - All FDs are retained or can be reconstructed

Data Normalization - CSc 460 v1.1 (McCann) - p. 27/44

Beyond Functional Dependencies

You're kidding — there are *more* normal forms?

Consider this schema:

Bookstore				
Course	Professor	Text		
Programming	${Jones,Smith}$	{The Java Coloring Book, Java for the Imbecilic}		
Data Structures	{Jones}	{The Java Coloring Book, Boxes + Arrows = Linked Lists, Why Trees Grow Down},		

Data Normalization - CSc 460 v1.1 (McCann) - p. 29/44

Motivating Example (2 / 4)

To achieve 1NF, we need to 'flatten' the relation:

Course	Professor	Text
Programming	Jones	The Java Coloring Book
Programming	Jones	Java for the Imbecilic
Programming	Smith	The Java Coloring Book
Programming	Smith	Java for the Imbecilic
Data Structures	Jones	The Java Coloring Book
Data Structures	Jones	Boxes + Arrows = Linked Lists
Data Structures	Jones	Why Trees Grow Down

Bookstore2

Observations about Bookstore2:

Problems with Bookstore2:

Data Normalization - CSc 460 v1.1 (McCann) - p. 31/44

Motivating Example (4 / 4)

Let's try separating teaching from texts:

Teaches

<u>Course</u>	<u>Professor</u>
Programming	Jones
Programming	Smith
Data Structures	Jones

Requires				
Course	<u>Text</u>			
Programming Programming Data Structures Data Structures Data Structures	The Java Coloring Book Java for the Imbecilic The Java Coloring Book Boxes + Arrows = Linked Lists Why do Trees Grow Down?			

Multivalued Dependencies (1 / 7)

We need a new type of dependency!

Definition: Multivalued Dependency (MVD)

Let A be the set of attributes of relation R , with $X \subseteq A$ and $Y \subseteq A$. If two tuples $s, t \in R$ have matching X values, then the MVD $X \twoheadrightarrow Y$ exists in R when tuples u and w also exist in R such that				
	-			
	•			
	-			

Data Normalization - CSc 460 v1.1 (McCann) - p. 33/44

Multivalued Dependencies (2 / 7)

Let's apply the definition to a new example.

Example(s):

If St	udent> C	Class, whic	h additiona	al tuples must exist?
A =	$\{X,$	Y ,	$Z \}$	The Definition's Conditions: (a) all four tuples have matching X values
	<u>Student</u>	<u>Class</u>	TA	(a) all four types have matching Y values, (b) s and u have matching Y values, (c) t and w have matching Y values, (d) s and w have matching $A - Y$ values and
S	Art	244	Kay	(e) t and u have matching $A - Y$ values.
t	Art	337	Lee	
u				
w				

Multivalued Dependencies (3 / 7)

Does Bookstore2 contain an MVD?

Example(s):

an we identi	n we identify $s,t,u,$ and w for 'Programming				
	Bookstore2 (partial)				
Course	Course Professor Text				
Programmi	ng	Jones	The Java Coloring Book		
Programmi	ng	Jones	Java for the Imbecilic		
Programmi	ng	Smith	The Java Coloring Book		
Programmi	ng	Smith	Java for the Imbecilic		

Data Normalization - CSc 460 v1.1 (McCann) - p. 35/44

Multivalued Dependencies (4 / 7)

Does Bookstore2 meet the MVD definition? (Continued!)

Example(s):

Bookstore2 (partial)						
	Course Professor Text					
	Data Structures	Jones	The Java Coloring Book			
	Data Structures	Jones	Boxes + Arrows = Linked Lists			
	Data Structures	Jones	Why Trees Grow Down			

Multivalued Dependencies (5 / 7)

If $X \twoheadrightarrow Y$ comes from $Y \times Z$, does $X \twoheadrightarrow Z$ also hold?

Data Normalization - CSc 460 v1.1 (McCann) - p. 37/44

Multivalued Dependencies (6 / 7)

This pairing requirement leads to another, quite different,

definition of MVDs:

Definition: Multidependency

Let R be a relational schema, and let X, Y, and Z be subsets of R's attributes. Y is <u>multidependent</u> on X (or X multidetermines Y), denoted $X \twoheadrightarrow Y$, iff the set of Y values matching a given (X, Z) pair of values depends only on the X set and is independent of the Z set.

Multivalued Dependencies (7 / 7)

Summary:

- MVDs explain a more general kind of redundancy than do FDs.
- Like FDs, MVDs should be designed into a relational schema.
- Neither 1NF, 2NF, 3NF, nor BCNF covers MVDs.

Notes:

Data Normalization - CSc 460 v1.1 (McCann) - p. 39/44

4^{th} Normal Form (1 / 3)

Remember trivial FDs?

Definition: Trivial MVDs

At last, a normal form that addresses MVDs:

Definition: Fourth Normal Form (4NF)

4^{th} Normal Form (2 / 3)

Is our decomposition of Bookstore2 in 4NF?

Teaches			Requires		
<u>Course</u>	<u>Professor</u>	Course	<u>Text</u>		
Programming Programming Data Structures	Jones Smith Jones	Programming Programming Data Structures	The Java Coloring Book Java for the Imbecilic The Java Coloring Book Boxes + Arrows - Linked Lists		
		Data Structures	Why do Trees Grow Down?		

(Recall: The MVDs are Course ----> Professor and Course ---> Text)

Data Normalization - CSc 460 v1.1 (McCann) - p. 41/44

4^{th} Normal Form (3 / 3)

Notes:

• How often do non-4NF relations occur?

A study of 40 schemas found 23% had ≥ 1 non-4NF relation(s).

(Meaning: Stopping at 3NF/BCNF might be stopping too soon!)

- Three time-saving theorems:
 - All non-4NF relations can be decomposed into two or more 4NF relations.
 - All 4NF relations are also BCNF relations.
 - A BCNF relation whose candidate keys are all single attributes is also a 4NF relation.

5th Normal Form (aka Projection-Join N.F.)

Consider (most of) SPJ:

- Because of the redundancies within the three pairs (S# P#, S# J#, and P# J#), 5NF says that SPJ should be divided into three relations (SP, SJ, and PJ).
- Practically, doing so isn't efficient (much re-joining is required).
- And there are several other normal forms for even more esoteric problems! (E.g., 6NF, DKNF, Unnormalized Form, ...)

Data Normalization - CSc 460 v1.1 (McCann) - p. 43/44

Normal Form Venn Diagram

