DBMS Security

Security - CSc 460 v1.1 (McCann) - p. 1/19

A Few DBMS Security Issues

Issue #1: Availability

Two goals that often conflict:

- Making authorized access easy
- Making <u>un</u>authorized access hard

Two categories of access controls:

Security - CSc 460 v1.1 (McCann) - p. 3/19

DAC Features of SQL (1 / 4)

Views are a very basic form of DAC:

- Gives users access to necessary information
- Completely hides origins of values
- Is a form of 'security by obscurity'

Options to the CREATE USER command:

Form: CREATE USER <username> [<option(s)>];

Typical options include:

Security - CSc 460 v1.1 (McCann) - p. 5/19

DAC Features of SQL (3 / 4)

Providing privileges with the GRANT command:

```
Form: GRANT <privilege>
[ ON <object> ]
TO <user>
[ WITH GRANT OPTION ];
```

Example(s):

DAC Features of SQL (4 / 4)

What can be GRANTed may be REVOKEd:

Form: REVOKE <privilege>
 [ON <object>]
 FROM <user>;

Example(s):

Security - CSc 460 v1.1 (McCann) - p. 7/19

Mandatory Access Controls (1 / 3)

Idea: The DBMS has default security procedures that must be followed.

Mandatory Access Controls (2 / 3)

Example: The Bell–LaPadula Model (1974)

Security classes are applied to two groups:

Security - CSc 460 v1.1 (McCann) - p. 9/19

Mandatory Access Controls (3 / 3)

Bell-Lapadula enforces two restrictions on security classes

(class) assigned to a subject (S) and an object (O):

To help maintain confidentiality, we can require:

Security - CSc 460 v1.1 (McCann) - p. 11/19

A Special Case: Statistical DBMS Security

Restriction: Users may ask aggregate queries only

Example(s):

Example(s):

Issue #3: Integrity

Idea: Be able to recover DBs after accident or disaster

Security - CSc 460 v1.1 (McCann) - p. 13/19

Some Standard Oracle Security Features

These are available by default in recent versions of Oracle:

- User authentication
- User privileges and roles
- Virtual Private DBs (via query modification)
- Classification of fields
- Network data encryption (via PL/SQL's DBMS_CRYPTO)
- Digital certificate authentication
- Database auditing

A Common DBMS Attack: SQL Injection (1 / 5)

A portion of the roster of teams registered for the 2009 ACM North Central Programming Contest at Lincoln, NE:

kansas State University	🗯 United States	leam K-State	ACCEPTED
Kansas State University	🚟 United States	Wildcat hijack	ACCEPTED
Mount Marty College	United States	Mount Marty College Lancers	ACCEPTED
Nebraska Wesleyan University	United States	Epik High	ACCEPTED
South Dakota State University	United States	2+2	ACCEPTED
South Dakota State University	United States	Never Gonna Let You Down	ACCEPTED
Southwest Minnesota State University	United States	Mustang 1	ACCEPTED
Southwest Minnesota State University	United States	Mustang 2	ACCEPTED
University of Nebraska - Lincoln	United States	'; DROP TABLE TEAMS;	ACCEPTED
University of Nebraska - Lincoln	United States	Audrey II	ACCEPTED
University of Nebraska - Lincoln	United States	Estrogen Attack	ACCEPTED
University of Nebraska - Lincoln	United States	Incendiary Pigs	ACCEPTED
University of Nebraska - Lincoln	United States	Phelpsian Φt	ACCEPTED
University of Nebraska - Lincoln	United States	Smiley Faces :)	ACCEPTED
University of Nebraska - Lincoln	United States	ThreadDeath	ACCEPTED
Ilniversity of Nebraska - Omaha	Inited States	Team Damage	ACCEPTED

Security - CSc 460 v1.1 (McCann) - p. 15/19

A Common DBMS Attack: SQL Injection (2 / 5)

The attack:

A user tries to add (inject) SQL into an incomplete query,

in hopes of getting the DBMS to reveal additional information.

A Common DBMS Attack: SQL Injection (3 / 5)

Example(s):

Consider this dynamically–constructed SQL query:

Security - CSc 460 v1.1 (McCann) - p. 17/19

A Common DBMS Attack: SQL Injection (4 / 5)

Example(s): (continued)

But what if the user types this input?

Preventing Injection Attacks:

Security - CSc 460 v1.1 (McCann) - p. 19/19