
Chapter 4

Direct Proofs

At last, we are ready to begin learning about writing formal proofs. Just as
the previous chapters’ material built upon that of the chapters that preceded
them, so will this chapter’s material build upon that of its predecessors. If
you are jumping directly to this chapter and find that some ideas are difficult
to follow, please consider returning after you read about logic, quantified ex-
pressions, and arguments. A solid foundation in those topics will serve you
well as you learn to write proofs.

This chapter focuses on direct proofs, the most common variety. It also
explains proof by cases, a technique that is often used in conjunction with
direct proofs, but which is also useful with other proof techniques. At the
end, we introduce some approaches for showing that a conjecture cannot be
proven. If you are looking for indirect (a.k.a. ‘contra’) proof techniques, see
the next chapter . . . but read this one first!

4.1 The Heartbreak of Probarephobia1

We have a confession to make. Remember truth tables? Sequences of logical
equivalences? Valid arguments using rules of inference? Those are all proofs.
You’ve been soaking your brain in proofs for a few chapters already.2

1 A 1960s ad campaign for Tegrin skin care products introduced the phrase “Heartbreak
of Psoriasis” to attract the attention of people with dry, itchy skin.

2A 1981 commercial for Palmolive dish-washing liquid featured a woman soaking her
fingers in a small bowl of it, in preparation for a manicure, as an illustration of how gentle
Palmolive is on your hands. The memorable phrase from Madge the Manicurist was, “You’re
soaking in it!” We thought about titling this chapter “Direct Proofs: You’ve Been Soaking
in Them!”
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106 CHAPTER 4. DIRECT PROOFS

There are two reasons we didn’t call them proofs. The first is that the
kinds of arguments that most people think of as ‘proofs’ are less constrained,
usually more challenging to construct, and often harder to follow than are the
examples we’ve seen so far. The first two of those three justifications come with
the territory. You know more now than you did at the start of Chapter 1, and
that knowledge allows us to start working with more challenging hypotheses
and conclusions.

As for being harder to follow, that’s a problem that proof-writers can
address by writing their proofs to be readable by a knowledgeable audience.
We will try to follow that advice, which means that we will no longer justify
every step of every argument. This is necessary to keep the lengths of our
proofs manageable, and is standard practice. The content of the proofs will
contain justifications for only the less-obvious steps. We will rely on your
knowledge of logic, arguments, and the rest of your education to allow you to
fill in most of the remaining details.

The second reason for avoiding the word ‘proof’ until now: Fear. College-
bound students are advised to complete a reasonably well-defined sequence of
math classes during high school (or the equivalent), but too frequently don’t
receive a significant introduction to proofs along the way. There are many
reasons for this omission, but the consequence is what matters. Students
often end up believing that a proof is a mysterious and impossibly difficult
construct that isn’t important: “If learning to read and write proofs were
useful skills, someone would have taught them to us by now!” You’re in luck:
‘Someone’ has already started, and in this chapter ‘someone’ will continue the
job.

In an effort to show that proofs aren’t scary (and to entertain the world),
writer Ken Keeler of the American animated television show Futurama penned
an episode (“The Prisoner of Benda”) that included the full text of a proof
(Figure 4.1) showing that the effects of Professor Farnsworth’s mind-switching
machine could be reversed.3 Keeler, who earned a Ph.D. degree in applied
mathematics, wrote the proof specifically for this episode. If a proof can star
in a cartoon, you know they don’t need to be frightening.

As far as we can tell, no one has bothered to create a word for the fear
of proofs. We modestly suggest ‘probarephobia,probarephobia ’ from the Latin probare (to
show to be true, to demonstrate) and the Greek phobos (fear). There are
words for related fears – for example, ‘arithmophobia’ is the fear of numbers,

3 The full text of the proof is available online; one source is http://theinfosphere.

org/Futurama_theorem
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4.2. PROOF PRELIMINARIES 107

Figure 4.1: Futurama writer Ken Keeler’s mind restoration proof from the
episode “The Prisoner of Benda.” Credit: The Curiosity Company.

and ‘phronemophobia’ is the fear of thinking.4 – but until now none for a fear
of the content of this chapter5

4.2 Proof Preliminaries

Before we write any of these challengingly less-constrained proofs, we have
some terminology to introduce and some advice to impart.

4.2.1 Terminology

Proofs come with a handful of associated terms. If you’re like most people,
you’ve heard of them, but you’re not quite sure how they differ. We start by
distinguishing conjecture from theorem.

Definition 22: Conjecture conjecture

4Some phobia names contain words related to proofs, but describe very different fears.
‘Theologicophobia’ is the fear of theology, while ‘amathophobia’ is the fear of . . . dust.

5 Suggested t-shirt and bumper-sticker slogan: Got Probarephobia? Relax; It’s a Given.
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108 CHAPTER 4. DIRECT PROOFS

A statement with an unknown truth value is a conjecture.

Definition 23: Theoremtheorem

A theorem is a conjecture whose truth has been demonstrated.

Example 76:

The existence of intelligent life elsewhere in the universe is a conjecture.6

When an extraterrestrial visitor arrives to ask us to stop littering this
corner of the galaxy with our space probes and radio waves, it will become
a theorem.

In this book, we will label as conjectures all statements we are about to try
to prove. As soon as we can successfully prove one, from that point forward
we’ll call it a theorem. If we can disprove it, it’s a disproven conjecture.disproven conjecture If we
can do neither, it remains merely a conjecture.

Now we can define ‘proof.’

Definition 24: Proofproof

A sound argument that demonstrates the truth of a theorem is a proof.

Notice that we are insisting on a sound argument, not just a valid one. We
can’t claim that we’ve demonstrated that a conjecture is true by beginning
with information we’re just assuming to be true – we need to start with truth
to establish truth.

Our last two definitions are other names for theorems. They are used
to describe theorems that are created as parts of, or extensions of, other
theorems. We will provide examples of these in section 4.3.

6And has only tenuously been accepted to exist here.
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Definition 25: Lemma lemma

A lemma is a theorem created to aid in the construction of another the-
orem.

Sometimes, while writing a proof, you reach a point where you say to
yourself, “Self, I could easily finish this proof if I knew that this statement
were true.” You start trying to prove that it is, and if you succeed, you will
have created a new theorem – a lemma – that you can use to justify a step in
your original proof. You can think of a lemma as a ‘sub-theorem,’ much as you
might create a subprogram (e.g., a method or a function) in a programming
language for the main program to invoke.

Mathematicians sometimes reserve ‘theorem’ to describe important results
and use ‘lemma’ for less significant results. In this book, we’ll be calling every
proven conjecture a theorem, reserving ‘lemma’ for situations matching our
definition.

Definition 26: Corollary corollary

A corollary is a theorem whose truth follows almost immediately from
the truth of another theorem.

The difference between a lemma and a corollary, then, is that lemmas
appear in the middle of proofs of other theorems, while corollaries appear
immediately after such proofs. They are both usually smaller results (and
usually easier to prove) than their associated theorems.

4.2.2 Proof-Writing Advice

Before we cover any proof techniques, we want to try to put you in an appro-
priate frame of mind. As we’ve mentioned, many people have a deep-seated
fear of proofs. A common manifestation of this fear is a tendency to ‘lock
up’ – to have no idea what to do, or even what to try, to move the argument
forward. This is similar to “writer’s block,” which occurs when an author
can’t decide what to write next. When you get stuck while writing a proof
and aren’t sure of the next step, try to remember these pieces of advice.
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110 CHAPTER 4. DIRECT PROOFS

1. Not all conjectures can be proven. Always ask yourself: “Does
this conjecture seem to be true?” If you have doubts, start by trying
to disprove the conjecture – that is, try to show that the conjecture is
false. Techniques for disproof are covered in section 4.4.

2. Dead-ends are expected. When writing a proof, it’s very common to
reason your way to a conclusion that doesn’t seem useful for completing
the proof. Maybe it isn’t useful, or maybe you’re just not seeing how
it can be useful. If you feel yourself getting frustrated, take a break. If
you can, take a walk. During an exam, work on another question and
come back to the proof later.

3. Choose the right tool for the job. We cover the direct proof tech-
nique in this chapter, two more techniques in the next chapter, and a
fourth several chapters later. If the technique you chose initially doesn’t
seem to be a good fit for the conjecture, try another.

4. “Mind what you have learned. Save you it can.”7 To Yoda you
listen! Any of your education in mathematics, including what you’ve
covered in this book, can be useful in proof-writing. Keep your mind
open.

5. There are multiple ways to say the same thing. Some of those
ways can be more useful than others. For example, we know that 10 | x

is true when x is a multiple of 10. But also, x % 10 = 0 and the decimal
representation of x ends in a zero when x is a multiple of 10.

6. Practice! An unfortunate consequence of standardized mathematics
curricula and standardized assessment examinations in grade school is
that students learn to expect all math problems on a given topic to look
the same and to be solved the same way. When they get to college,
they are often unprepared to be creative and to embrace flexibility, two
characteristics that proof-writing requires. The more conjectures you
examine, and the more proofs you write, the more prepared you will be.

4.2.3 Proofs of p → q

Conjectures are written, or can be re-written, as implications. We have some
given information (the hypothesis or hypotheses) and the conclusion we hope

7 Star Wars: Episode V – The Empire Strikes Back, Lucasfilm, 1980. (1980!?!)
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to justify. We are also told the circumstances under which the conclusion
needs to be true, though sometimes we need to infer them ourselves.

Because we are proving conjectures expressible as implications, it is com-
mon to refer to them using the notation p → q. Often, the conjecture needs to
be shown to hold over all members of a domain, such as the positive integers.
In such “for all” cases, we can use ∀x(P (x) → Q(x)), x ∈ D instead of p → q,
but as the idea is the same with either notation, most of the time we will stick
with the simpler p → q when we need to use notation.

Methods of Proof

To correctly reason from the hypotheses to the conclusion, we need acceptable
proof techniques that can show the truth of conditional statements. Having
constructed proofs in the earlier chapters, there must have been at least one
underlying technique, and there was:

(a) Direct proof. direct proofOutside of textbooks, it’s safe to say that most proofs
are direct proofs. All of the logical equivalence and rule of inference
arguments we examined in the previous chapters are direct proofs. We
will revisit those, and cover additional structurings of direct proofs, in
section 4.3.

The direct proof method is also the foundation for three related proof
techniques, the first two of which are covered in the next chapter:

(b) Proof by Contraposition. proof by contrapositionAlso known as proof of the contrapositive, this
technique is a very slight variation of direct proof. It will be covered in
Section 5.1.

(c) Proof by Contradiction proof by contradictionsacrifices the definite conclusion of direct and
contraposition proofs to gain a compound hypothesis (a sacrifice which
is more useful than it may sound). This method is covered in Section 5.2.

(d) Proof by Induction, proof by inductionwhich, despite the name, has a satisfying, comfort-
food core of deduction. Proof by induction is different enough to warrant
a chapter of its own.

Many other proof techniques exist. These can all be considered to be
forms of direct proof, but they have separate names to help us keep the vari-
ations straight. We won’t have a special section for these; instead, we will
demonstrate them as we have need of them:
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112 CHAPTER 4. DIRECT PROOFS

(e) Vacuous Proofsvacuous proof are based on the idea of vacuous truth we defined in
Chapter 1. They often appear when we have a definition of a property
in the form of an implication and try to apply the definition to a situation
in which the antecedent cannot be applied.

(f) Trival Proofstrivial proof are those in which the implication is true because the
consequent is true; that is, the truth of the antecedent is irrelevant. For
example: If I am both Batman and Superman, then 2 is even.

(g) Proof by Casesproof by cases (also known as proof by exhaustion8) applies when we
can show that the conjecture is true for every member of the domain by
testing each member individually or by testing partitions of the domain.
Proofs by cases often appear within other proof techniques, as we will
see.

(h) Constructive Proofsconstructive proof identify a member of the domain that makes an ex-
istential conjecture (that is, one that merely claims a satisfying member
exists) true. A related technique is the non-constructive proof,non-constructive proof which
manages to demonstrate that an existential conjecture is true without
ever identifying a specific example.

(i) Combinatorial proofscombinatorial proof show the number of ways to count an activity, such
as finding the number of subsets of size n of a set of size m. We won’t
see one of these proofs until the counting chapter.9

Additional proof methods exist, but this collection is enough for a discrete
mathematics book.

Content of a Complete Proof (As Far As We’re Concerned)

Everyone has their own favorite way to write a proof, and there is no single
set of proof-writing rules that pleases everyone. Here are the principles to
which we will (usually!) adhere for the proofs in this chapter, and in the rest
of the book. We reserve the flexibility to ignore them when we need to make
a point.

1. Start by writing “Proof (proof technique):” at the top of the proof.
For example: “Proof (Direct):”. This lets the reader know how you have

8 Magically, at 3 a.m. on a homework due date, every proof technique temporarily shares
this name.

9You’re welcome!
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structured your argument, allowing him or her to more easily understand
it.

2. State your hypotheses and any other given information. We don’t con-
sider this to be a necessity, but is especially helpful (both to you and to
the reader) when using a technique other than direct proof. It’s also a
good way to stave off, if not eliminate, writer’s block.

3. Make your proofs comprehensible. You’ve almost certainly had the ex-
perience of trying to read a proof in a textbook, only to mutter, “Wait
. . . where’d that come from?!?” It’s possible that you didn’t have the
knowledge or experience to immediately understand the step, but it’s
also possible that the author abbreviated the proof for publication and
lost too much detail in the process. Proofs should be clear, not cloudy.

4. Justify the less-obvious steps of your argument. Telling the reader that
x + y = y + x by commutativity of addition will help few readers, but
mentioning that eiπ + 1 = 0 is Euler’s Identity will help most anyone
who is not a math major.

5. “Declare” your variables. Ever written a program in a language that
requires the programmer to declare variables before they are used in
statements? One reason for that requirement is to help the language
translator correctly convert your statements to a lower-level representa-
tion. Similarly, telling the reader of your proof that a variable’s value
is drawn from a particular domain helps the reader understand your
argument.

6. When we wrote our logical equivalence and rules of inference arguments,
we used columnar representations. If your proof’s clarity would be en-
hanced by using such a representation, please use it. Proof-writers often
prefer to have their proofs look as much like traditional paragraphs of
text as possible, but we’ve already seen that the extra hassle of format-
ting a few columns can be well worth the trouble.

7. To show that your proof is complete, finish it by writing the word “there-
fore”, a comma, and the original conjecture. We think is this a better
way for beginning proof-writers to end a proof than are the traditional
endings of “Q.E.D.”10 or a ‘tombstone’ marker (such as ‘2’ ( LATEX :

10 Q, E, and D are the first letters of the words in the Latin phrase quod erat demon-

strandum, which means “this was to be demonstrated.” “Quite easily done” is a popular
sarcastic alternative.
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114 CHAPTER 4. DIRECT PROOFS

\Box)), because restating the conjecture helps you remember what you
were trying to prove. When you are deep in the middle of an argument,
it’s easy to forget what you were arguing about in the first place.

4.3 Direct Proofs

As the name suggests, a direct proof is quite straight-forward. To prove a
conjecture of the form p → q, we assume that the (often compound) hypothesis
(p) is true, and demonstrate that the conclusion (q) must also be true. In short:

To prove p → q: Assume p, show q.

4.3.1 Examples of Direct Proofs

Our first direct proof example is very straight-forward, so that we can focus
on the construction of the proof rather than on the difficulty of the argument.
We will ease into every new proof technique in the same way.

Example 77:

Problem: Using a direct proof, prove this conjecture: If x and y are odd
integers, the product xy is also an odd integer.

Solution: We are told to use a direct proof. This means that we are
to assume that the hypothesis is true and show that the truth of the
conclusion must follow. Our first task, then, is to identify the hypothesis
and the conclusion. In this example, finding them is trivial, because the
conjecture is expressed in an if-then form: Our hypothesis is “x and y are
odd integers,” and our conclusion is “the product xy is an odd integer.”
The word ‘also’ doesn’t change the conclusion; it can be dropped.

We know from the math review appendix (Section A.8). that each odd in-
teger is one more than twice some integer. That is, we can say x = 2a+1
and y = 2b + 1. Using this form of expression for odds requires the intro-
duction of the new integer variables a and b. In the proof, we’ll have to
remember to explicitly declare them to be integers.

Now that we have representations for x and y, we can multiply those
polynomials to create a representation for xy: xy = (2a + 1)(2b + 1) =
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4ab + 2a + 2b + 1.

Having created such an expression, you might be tempted to say, “OK,
but . . . so what?” Remember what we are trying to show: That xy is
odd. We know that odds have the form 2z + 1. By factoring a 2 from
the first three terms of our xy representation, we can achieve that form:
4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1. Products and sums of integers
are also integers, and so xy is an odd integer because it has the 2z+1 form.

We could prepend “Proof (Direct):” and append “Therefore, . . . ” lines
to the preceding paragraphs and call it a proof. Such a proof would be
unnecessarily wordy, even for us. Instead, we’ll condense it into a more
compact, though not minimal, version. Here’s the result:

Proof (Direct): We may assume that x and y are odd inte-
gers. Because they are odd, x and y are each one more than
twice some integer. Let those integers be a and b, and let
x = 2a + 1 and y = 2b + 1. Using those representations,
xy = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.
This expression shows that xy can be represented as one more
than twice an integer, demonstrating that xy is an odd integer.

Therefore, if x and y are odd integers, the product xy is
also an odd integer.

This proof includes a bit more detail we will use in most proofs in this
book – in general, we won’t explain everything, but we will explain the
key steps. The issue of detail is also addressed in Example 78, below.

The proof in Example 77 needed two new variables to create the represen-
tations of x and y, not just one. If we tried to use a single variable, we’d say
that x = 2c + 1 and y = 2c + 1. By transitivity, this means that x = y. The
conjecture does not require that x and y be the same odd integer, meaning
that the proof’s representations of x and y can’t require it, either.

Example 77 demonstrated the level of detail we will use in most proofs in
this book. The next example addresses a related concern of students.
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Example 78:

Problem: My instructor’s exams are really long;11 I don’t have time to
write proofs with that much detail! Can I get away with writing just the
math?

Solution: Probably not, but of course that depends on your instructor.
Here’s a shortened version of the proof given in Example 77 that we feel
has an acceptable level of detail for a proof on an exam:

Proof (Direct): Let x = 2a + 1 and y = 2b + 1, x, y ∈ Z
odd.

xy = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.
This shows that xy is an odd integer.

Therefore, if x and y are odd integers, the product xy is
also an odd integer.

This form is still acceptable because it shows a logical progression from
the hypothesis to the conclusion, and includes enough detail for the reader
to accept that the conclusion follows from the hypothesis, although the
reader is expected to fill in some minor details mentally.

Note that extending the algebra through to the 2(2ab + a + b) + 1 expres-
sion is important. If you stop with 4ab + 2a + 2b + 1, you’re not showing
that xy has the form of an odd-integer, leaving the reader to wonder if
you really know how to complete the proof. Most instructors won’t give
you the benefit of the doubt on something like this. Be safe; be sure to
include enough detail to make it clear that you know what you’re doing.
The points you save will be your own.

Our next direct proof example requires a little more imagination. It’s also
rather lengthy, to make a point about how proofs are often constructed.

11The author has never heard such a comment from his students. Never happened. Not
even once. In unrelated news, rumors of the author’s selective hearing and recollection are
undoubtedly wild exaggerations.
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Example 79:

Problem: Using a direct proof, prove this conjecture: ac > bd when
a > b > 0, c ≥ d > 0, where a, b, c, d ∈ R.

Solution: The first step is to identify the hypothesis and the conclu-
sion. This conjecture uses a “q if p” form, meaning that ac > bd is the
conclusion and the rest forms the compound hypothesis.

Next, we need to make sure we understand what the notation is try-
ing to tell us. a > b > 0 contains three individual pieces of information:
a > b, b > 0, and, by transitivity of >, a > 0. Similarly, we are given
that c ≥ d, d > 0, and c > 0. Pay close attention to the inequalities; all
of them are > except for the ≥ in c ≥ d.

We’re ready to think about the proof. We need some way to introduce
the products ac and bd. It’s tempting to say, “Well, just multiply a > b

by c > d, and we’re done!” Unfortunately, that isn’t legal; inequali-
ties are boolean expressions, and multiplication doesn’t apply to boolean
operands. We’ll have to create ac and bd another way.

Let’s start with a > b. We can try to create ac by multiplying the
left side by c, producing ac > b. But is that true? It may not be, as c

could be less than one, which could make ac less than or even equal to
b. But we’re on the right track: We need to multiply both a and b by
c to produce ac > bc. This is true because we’re multiplying both sides
by the same amount, and the direction of the inequality stays the same
because c > 0.

We can create bd in the same way: Multiplying both sides of a > b by d

produces ad > bd. Now we have to figure out how to combine ac > bc and
ad > bd. We can do this with transitivity of > if we knew that bc > ad

. . . but we don’t. We could try to prove that it is true and introduce that
result as a lemma in this proof, but before we go to that trouble, let’s
stop and think: Can we create bd from something other than a > b?

Happily, we can. We know that c ≥ d. Multiplying both sides of it
by b produces bc ≥ bd. We can use the properties of inequalities given in
the math review appendix (Appendix A) to combine ac > bc with bc ≥ bd

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!



118 CHAPTER 4. DIRECT PROOFS

and show that the conclusion of ac > bd is true.

Having discovered how to show the truth of the conclusion, we can write
up the proof as a tightened version of the above discussion.

Proof (Direct): We are given that a > b, and that c > 0.
Multiplying both sides of a > b by c produces ac > bc.

We are also given that c ≥ d and b > 0. Multiplying both
sides of c ≥ d by b produces bc ≥ bd.

By the properties of inequalities, together ac > bc and bc ≥ bd

tell us that ac > bd.

Therefore, ac > bd when a > b > 0, c ≥ d > 0, where
a, b, c, d ∈ R.

Example 79 shows how easily a proof writer can encounter a dead-end in
his or her reasoning. Textbook and research paper authors rarely reveal their
dead-ends in their final proofs, making it seem that they created the proofs
correctly on the first try. As this example has shown, even a short proof can
be the result of much ‘wasted’ work.

Our next example will give us a reason to introduce a lemma. Before that,
it will require us to do some reasoning about the meaning of the conjecture.

Example 80:

Problem: Prove that the
√

x being even is sufficient to show the necessity
of x’s evenness, given that x ∈ R.

Solution: Are you tempted to say, “Yeah, I can solve this problem by
finding the guy who wrote that and making him put it into English!”?
We sympathize. But, Chapter 1 saves us from committing a satisfying
but unnecessary act of violence: We know what ‘sufficient’ and ‘neces-

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!



4.3. DIRECT PROOFS 119

sary’ mean when they are used correctly. Here, we are given that
√

x is
even, and we need to show that x is even.

What does ‘
√

x is even’ give us? We know that only integers can be
even, and that the only way for a square root to be an integer is for the
argument to be a perfect square.

Let’s make this easier to think about by letting
√

x = y. Because we
are allowed to assume that

√
x is even, we can assume that y is even.

Now let’s consider x. x =
√

x · √
x = y · y. If we can show that y · y is

even, we will have shown that x is even, and our proof will be complete.

Showing that y · y is even requires a separate proof. Because we will
be using the theorem that results from this second proof to complete our
original proof, the evenness of y · y will be a lemma to our main proof.

That’s all fine, but let’s not get ahead of ourselves: Is y · y always even?
We are given that y is even, meaning we can represent it as twice some
integer (say, twice w). y · y = 2w · 2w = 4w2 = 2(2w2). Because we can
express y · y as twice an integer, y · y is even. And, because x = y · y, x

is even, completing the original proof.

Time to write it all up. We will start by proving the lemma (let’s call
it Lemma 80), but we will toss in a twist to the conjecture to keep it
interesting.

Conjecture: The square of any even number is also even.

Proof (Direct): Let y represent any even number. Being
even, y = 2w, w ∈ Z. y2 = (2w)2 = 4w2 = 2(2w2). This shows
that y2 is an even number.

Therefore, the square of any even number is also even.

The ‘twist’ in the above conjecture is that it isn’t in an ‘if-then’ form. We
had to re-write it that way, at least mentally, to know the hypothesis and
conclusion: If y is an even number, then y2 is also even. English-to-logic
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conversions just don’t go away.

There’s something else to notice in that proof: We didn’t restrict w to
being a non-negative integer. First, the conjecture isn’t limited, meaning
that our proof shouldn’t be limited. Second, negative integers are either
odd or even, just as the positives (and zero) are. It requires no extra
effort to prove the conjecture for all evens, so why not?

At last, we can prove the original conjecture, which was: The
√

x be-
ing even is sufficient to show the necessity of x’s evenness, given that
x ∈ R.

Proof (Direct): We are given that
√

x is even. It follows from the
definition of evenness that

√
x is an integer. Let y =

√
x, y ∈ Z.

By the definition of square root, the square of the square root of
a real number is the same real number. Thus, x = (

√
x)2 = y2.

Lemma 80 shows that the square of any even number is
also even. By that lemma and the fact that y is even, we know
that y2, and thus x, is even, completing the argument.

Therefore, the
√

x being even is sufficient to show the ne-
cessity of x’s evenness, given that x ∈ R.

If the use of the variable y in both proofs of Example 80 confuses you, feel
free to use a completely different set of variables in each proof. We re-used
y because we also re-used it in the explanation at the top, to highlight the
connection between the original proof and the lemma.

For our final example, we will tie off a loose end. Earlier (in section 4.1)
we said that sequences of logical equivalences and rule-of-inference arguments
were actually proofs. Let’s see how we can re-structure one of those (specifi-
cally, Example 66 of Chapter 3) as a proof.

Example 81:

Problem: Assume that if you have a dog and you drop a piece of bread
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on the floor, then you won’t need to pick up the bread. Further assume
that you do have a dog, and you did drop a piece of bread on the floor.
Prove that you didn’t need to pick up the piece of bread.

Solution: We’ve already created this argument, so all we have to is write
up as we would a proof.

Proof (Direct): By the rule of inference known as Conjunction,
we know that the conjunction of “you have a dog” and “you drop
a piece of bread on the floor” is true. By applying Modus Ponens
to that conjunction and the given implication, we know that you
didn’t need to pick up the bread.

Therefore, you didn’t need to pick up the piece of bread,
assuming that if you have a dog and you drop a piece of bread
on the floor, then you won’t need to pick up the bread; assuming
that you do have a dog; and assuming that you did drop a piece
of bread on the floor.

The arguments in Chapter 3 required more given information than did our
previous direct proof examples, making this proof, especially the ‘there-
fore’ line, seem quite wordy. Worse, the proof wasn’t especially easy to
follow, as the proof’s author expected us to ‘see’ that the rules of infer-
ence were applied correctly. That was easy enough for Conjunction, but
if you hadn’t seen that argument before, would you have been confident
that Modus Ponens was used correctly based only on this presentation?
Imagine trying to read (or write!) an explanation of an application of a
messier rule of inference, such as Resolution.

When writing out an argument in English hinders comprehension more
than it helps, use an alternative. Writing arguments in columns, as we
did in Chapter refch:arguments, is perfectly acceptable in a proof, too —
remember, those arguments are also proofs. We can wrap our original
columnar argument in our usual proof trappings and create a hybrid that
will be easy to follow.
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Proof (Direct): Let d be ‘you have a dog,’ b be ‘you dropped a
piece of bread on the floor,’ and n be ‘you need to pick up that
piece of bread.’

(1) d [ Given ]
(2) b [ Given ]
(3) d ∧ b [ 1, 2, Conjunction ]
(4) (d ∧ b) → ¬n [ Given ]

(5) ∴ ¬n [ 3, 4, Modus Ponens ]

Therefore, you didn’t need to pick up the piece of bread,
assuming that if you have a dog and you drop a piece of bread
on the floor, then you won’t need to pick up the bread; assuming
that you do have a dog; and assuming that you did drop a piece
of bread on the floor.

Writing out the ‘therefore’ line seems even more redundant that it al-
ready is, but we did so to stick to our form, and to get the reader’s mind
back to the English version of the conjecture.

4.3.2 Examples of Direct Proof by Cases

Not infrequently, a conjecture’s hypothesis provides so little useful information
that it is convenient to create additional information, just so that you have
a starting point for your argument. One way to do this is to partition the
set upon which the conjecture is constructed, and show that the conjecture
holds for each partition. The description of the partitioning can often be all
the additional information the argument requires.

Example 82:

Problem: Prove that n3 + n + 2 ∈ Z
even, where n ∈ Z.

Solution: This conjecture doesn’t give us much to work with – all we
know is that n can be any integer. But what does that tell us that’s
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helpful? We know that integers are real numbers. We know that integers
are rational. We know that the product of two integers is also an inte-
ger. We know lots about integers, but nothing that seems useful for this
conjecture.

Then again, maybe we do know something of value: We know that every
integer is either even or odd. If we can show that n3 + n + 2 is even when
n is even and when n is odd, we will have shown that n3 + n + 2 is even
for all integers. Sounds like a job for ... proof by cases!

Proof (Direct): Any integer value is either even or odd. We will
show that n3 + n + 2 is even either way.

Case 1 : Let n be even. n = 2k, k ∈ Z. n3 + n + 2 =
(2k)3 + (2k) + 2 = 8k3 + 2k + 2 = 2(4k3 + k + 1). This demon-
strates that n3 + n + 2 is even when n is even.

Case 2 : Let n be odd. n = 2j + 1, j ∈ Z. n3 + n + 2 =
(2j + 1)3 + (2j + 1) + 2 = (8j3 + 12j2 + 6j + 1) + (2j + 1) + 2 =
8j3 + 12j2 + 8j + 4 = 2(4j3 + 6j2 + 4j + 2). This demonstrates
that n3 + n + 2 is even when n is odd.

Therefore, n3 + n + 2 ∈ Z
even, where n ∈ Z.

To avoid confusion, we used a different temporary variable in each case.
You can make a case12 that using the same variable for each part is like
using ‘i’ as a loop-control variable in two loops within the same computer
program, but we think that keeping the temporary variables unique is a
good idea in proofs.

In a proof by cases, each case is a mini-proof, basically a lemma. We could
treat them as lemmas, proving them individually as we did with the lemma
in Example 80. When the lemmas are as closely related as they are in a proof
by cases, it’s common practice to prove them all within the original proof.

We left the label on the proof as “Direct” because, even though we proved
the conjecture using more than one case, it’s still a direct proof: We assumed

12Sorry . . .
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p (n is an integer) and showed q (n3 + n + 2 is even). If you like, you can
embellish the label to be “Direct with Cases” or “Direct, Cases.” We will just
say “Direct” because the reader will be able to see at a glance that such proofs
include cases.

Partitioning is a useful tool for understanding large sets. Example 82
made use of the even/odd partitioning of integers. Another way to partition
integers: {Z−, 0,Z+}.13 Real numbers can be partitioned into the rationals
and the irrationals. Characters in the basic Latin alphabet can be partitioned
by case (upper and lower).

Consider truth tables. Each row of a truth table represents a unique as-
signment of truth values to variables. That is, a truth table is a partitioning of
the possible assignments in which each assignment is a partition of cardinality
one. Looked at another way, a truth table is a proof by cases.

Example 83:

Problem: Prove that (p ∨ q) ∨ p is a tautology.

Solution: We used a truth table to demonstrate this in Chapter 1. We
could re-write the truth table in English to have each case be its own
short paragraph, or we could just wrap the trappings of a proof around
the truth table.

13 That’s right – zero is neither positive nor negative. Some numeric representations,
such as the IEEE 754 floating-point standard, do distinguish between +0 and −0 because
doing so is sometimes scientifically useful.
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Proof (Direct): There are four possible assignments of boolean
values to the variables p and q. The following table shows the
evaluation of (p ∨ q) ∨ p on all four:

p q p ∨ q p (p ∨ q) ∨ p

(Case 1:) T T T F T
(Case 2:) T F T F T
(Case 3:) F T T T T
(Case 4:) F F F T T

No matter how true and false are assigned to the variables,
the expression evaluates to true.

Therefore, (p ∨ q) ∨ p is a tautology.

We added the “(Case 1:),” “(Case 2:),” etc., just to highlight how cases
are used in a truth table. In general, labeling the rows of a truth table
in that fashion is not necessary.

As we’ve seen multiple times, most recently in Example 83, it’s entirely
possible for a conjecture to have multiple variables. If we can partition the
domain of one variable (as we did in Example 82), we can certainly do it for
more than one. However, there is a cost: The number of cases that need to
be considered increases, making it more likely that one of them is considered
more than once, or worse, overlooked entirely.

Example 84:

Problem: Prove that if gh is odd, then g and h are both odd.

Solution: You should recognize the situation: We aren’t given a hypoth-
esis with much useful information (and we only know how to write direct
proofs), so we need to manufacture additional information.

This conjecture deals with odd numbers, making us think that parti-
tioning g and h into evens and odds might be a good approach to try.
Because we have two variables and two partitions for each, there are at
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most four cases to consider: Both g and h are even, both are odd, g is
even and h is odd, and g is odd and h is even. However, multiplication
is commutative, meaning that the last two cases are logically identical
– both represent the product of an even with an odd – leaving us with
only three cases to consider. Of those, only the ones with gh being odd
interest us, given the conjecture’s hypothesis.

Proof (Direct): Both g and h can be odd or even. We need to
consider three cases: Both g and h are even, both are odd, or one
is even and the other is odd.

Case 1 : Let both g and h be even. g = 2a and h = 2b,
where a, b ∈ Z. gh = (2a)(2b) = 4ab = 2(2ab), showing that, in
this case, gh is even. As the conjecture’s hypothesis is that gh is
odd, this case is irrelevant to the proof and can be ignored.

Case 2 : Let both g and h be odd. g = 2c+1 and h = 2d+1, where
c, d ∈ Z. gh = (2c+1)(2d+1) = 4cd+2c+2d+1 = 2(2cd+c+d)+1,
showing that gh is odd and thus fits our conjecture. For this case,
the conjecture holds (that is, when gh is odd, g and h are odd).

Case 3 : One of the variables is even and the other is odd.
WLOG, let g be even and h be odd. g = 2e and h = 2f +1, where
e, f ∈ Z. gh = (2e)(2f + 1) = 4ef + 2e = 2(2ef + e), showing
that gh is even. As with Case 1, this case can be ignored.

Of the three possible ways to assign odd and even integers
to g and h, only one fits the conjecture’s hypothesis. In that case,
the conclusion is true.

Therefore, if gh is odd, then g and h are both odd.

‘WLOG’wlog is an acronym14 for the phrase “without loss of generality,”
a common way to tell the reader that an arbitrary choice can be made
without violating the logic of the argument. In this proof, one of the
variables needed to be even and the other odd. It makes no difference
to the argument which is which, so we picked one of the two possibilities
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and used ‘WLOG’ to let the reader know that our specific choice didn’t
matter to the proof.

The proof in Example 84 got the job done, but it seems wasteful. We
had to consider three cases to discover that only one of them mattered. This
observation might cause you to think, “Maybe there’s an easier way to prove
this . . . ” There is, but we have yet to cover it. Don’t worry; we will, in
Example 95 of Chapter 5.

4.3.3 Detecting Poor Proofs

Seeing nothing but correct proofs can leave the impression that all proofs
are correct. Not true, of course. The history of mathematics includes many
examples of proposed proofs that turned out to be invalid arguments when
they were examined closely15 16 .

Here are three examples of poor proofs. Each demonstrates a common
mistake made in proof development. Hopefully, having seen these, you will be
less likely to make similar mistakes when writing your own proofs.

Example 85:

Problem: Prove that if 5n + 4 is even, then n is even, n ∈ Z.

‘Solution’ : Consider this attempt at a direct proof:

‘Proof’ (Direct): Assume that n ∈ Z
even. n = 2k, k ∈ Z.

5n + 4 = 5(2k) + 4 = 10k + 4 = 2(5k + 2), which matches the
given information that 5n + 4 is even.

Therefore, if 5n + 4 is even, then n is even.

14A point of pedantry: ‘WLOG’ is more accurately an initialism, but acronym is also
acceptable. Be aware that, if you start using ‘initialism’ in everyday communication, you’ll
never make it as a politician. You should probably avoid ‘pedantry,’ too.

15 Wikipedia has a list: http://en.wikipedia.org/wiki/List_of_incomplete_proofs
16Wikipedia is conveniently ignoring the reality that approximately 99.995% of poor

proofs were written by students on homework assignments or exams and discovered to be
invalid by incredulous teachers who used to have full heads of thick, lustrous hair.
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The reasoning behind this proof is perfect, except for one huge prob-
lem: It starts by assuming that the conclusion is true! Proofs
exist to demonstrate the truth of conclusions, not to accept them as be-
ing true. The conjecture that this proof proves is the converse of the given
conjecture. That is: If n is even, then 5n + 4 is even. As we learned in
Chapter 1, p → q 6≡ q → p. The truth of the converse says nothing about
the true of the original.

The lesson: Never assume that the conclusion is true.

A poorly constructed proof doesn’t tell us much about the conjecture.
Unfortunately, even attempting a direct proof with the correct hypothesis can
lead to a bad proof, as the next example shows.

Example 86:

Problem: Prove that if 5n + 4 is even, then n is even, n ∈ Z.

‘Solution’ : Having learned the lesson of Example 85, we try again:

‘Proof’ (Direct): Assume that 5n + 4 is even. 5n + 4 = 2k, k ∈ Z.
Solving for n, we find that n = 2k−4

5
, which is . . . ummmm, wow,

not even always an integer, so it can’t always be even . . . can it?

Maybe the Deity of Partial Credit will smile upon me if I write . . .

Therefore, if 5n + 4 is even, then n is even.

Indeed, 2k−4
5

isn’t always an integer. We started the proof correctly, and
still couldn’t prove it. That means that the conjecture is false . . . right?
Not necessarily. The problem with this proof is that it doesn’t make use
of a key piece of given information: n is an integer. This conjecture is
true; it can be proven with a direct proof that uses a little more creativity,
such as was used in Example 84.

The lesson: Heed the advice in Section 4.2.2.
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By the way: The Deity of Partial Credit might give you some partial credit
for remembering to supply the proper conclusion to the proof, but that doesn’t
mean the proof itself will be worth much. The Deity of Partial Credit, kind
as she/he/it may be, still has standards.

Our last example of a poor proof is a variation on a classic.

Example 87:

Problem: Lots of people have trouble writing their sevens and their twos
clearly enough to make them distinct. This isn’t really a problem at all,
because, as the following proof shows, 7 = 2! Be as sloppy as you like!

‘Proof’ (Direct): Seven times two is fourteen, and let’s make it
negative to show negative numbers a little love.

−14 = −14 [Any integer equals itself]

49 − 63 = 4 − 18 [Strange expressions for −14]

49 − 63 + 81
4

= 4 − 18 + 81
4

[Add 81
4

to each side]

(7 − 9
2
)2 = (2 − 9

2
)2 [Factoring (reverse FOIL)]

7 − 9
2

= 2 − 9
2

[Take square root of both sides]

7 = 2 [Add 9
2

to both sides]

Therefore, 7 = 2.

Does seven really equal two? Is the number line not to be believed?
Is reasoned society doomed to collapse?

Solution: No, no, and probably.17 There’s something wrong with this
proof, the same problem that many other ‘proofs’ of impossible conclu-
sions share: The square root step. In this ‘proof,’ it is claimed that
√

(2 − 9
2
)2 = 2 − 9

2
. What most people forget about square roots is that√

x2 = ±x = |x|. That is, x · x = −x · −x = x2. This proof quietly drops
that plus-minus sign (±, LATEX : \pm), a hidden step that breaks the
validity of the argument. If you were to finish the argument correctly,
you’d get a very boring, but correct, conclusion:
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(7 − 9
2
)2 = (2 − 9

2
)2 [From the above ‘proof’]

| 7 − 9
2

| = | 2 − 9
2

| [Correct square roots]

| 5
2

| = | −5
2

|
5
2

= 5
2

[No surprise there]

The lesson: Check each step of proposed proofs carefully.

Square roots, logarithms, and division by zero are common sources of
logical errors in ‘proofs.’ Whenever you see someone claim that they can
prove that 0 = 1, 1 = 2, 1 = −1, or the like, check the proof for a step
involving one of those constructs. Chances are, that’s where you will find the
logical error.

4.4 Disproving Conjectures

When a conjecture ‘smells’ false, or despite your best efforts you can’t create its
proof, you should spend some time trying to demonstrate that it is false. Such
demonstrations are known as disproofs.disproof Disproofs do prove that conjectures
are false, but you won’t often see a disproof written up as a formal proof.18

4.4.1 Find a Counter-Example

By far the most common way to show that a conjecture is false is to find a
counter-example,counter-example a specific assignment of legal values to variables that demon-
strates that the conjecture is false. Sometimes a counter-example is easy to
find (they are often found at the low and high ends of domains), but often a
remarkable amount of searching is required.

Example 88:

Problem: Prove or disprove: 2n is even for all n ∈ Z
∗.

17Hopefully, with the power of well-written proofs, we can delay that collapse for a while
longer. Everyone listens to reason . . . don’t they?

18Actually, you rarely see disproofs at all. Although studying failures can be very
educational, who wants to become famous for creating a failure? Some disproven con-
jectures have lingered as cautionary examples. Wikipedia has a small collection: http:

//en.wikipedia.org/wiki/Category:Disproved_conjectures.
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Solution: If you start by listing 2, 4, 8, 16, 32, etc., you will soon con-
clude that the conjecture must be true, because each number is double
the previous, and the first is even. But look at the domain more care-
fully: Z

∗ includes zero, and 20 = 1, which certainly isn’t even. Thus, the
counter-example 20 shows that the conjecture is not true.

To write this as an answer on a homework or exam, something like this
would be fine:

Disproof (Counter-Example): Let n = 0. n ∈ Z
∗, but 20 = 1 is

not even. The conjecture is not true.

That’s right – no fancy argument, just a clear statement of an exam-
ple from the desired domain that ‘breaks’ the conjecture.

Example 89:

Problem: Prove or disprove this conjecture:19 If 2k ≡ 2 (mod k), then k

is prime, k ≥ 2, k ∈ Z.

Solution: At first glance, this conjecture seems to be based on too many
coincidences to be true – the mod keeps increasing by one but the con-
gruences keep occurring. If you start looking for a counter-example, you
might find yourself believing in coincidences, because it does seem that
only when 2k ≡ 2 (mod k) is k prime: 22 ≡ 2 (mod 2), 23 ≡ 2 (mod 3),
24 6≡ 2 (mod 4), 25 ≡ 2 (mod 5), 26 6≡ 2 (mod 6), 27 ≡ 2 (mod 7), etc.

The conjecture is false, but it takes quite a bit more snooping to dis-
cover a counter-example: 2341 ≡ 2 (mod 341). 341 looks like it might be
prime, but it isn’t: 341 = 11 ·31. You’d definitely want to use a computer
to verify this counter-example: 2341 is over 100 decimal digits long!

19This is half of a biimplication conjecture, known as the Chinese Hypothesis, that never
really existed. It appears to have originated as a mis-translation of a math text, rather than
as a serious conjecture. The other half (if k is prime, then 2k

≡ 2 (mod k)) is an instance
of Fermat’s Little Theorem (not to be confused with Fermat’s Last Theorem), and is true.
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4.4.2 Prove the Negation

The second way to show that a conjecture is false is to prove that its negation
is true. Frequently, this is similar to finding a counter-example, but the two
approaches are not the same.

Imagine that you’re asked to prove a conjecture of the form p → q. You
try and try, but can’t do it, and so begin to suspect that it isn’t true. You
spend time looking for a counter-example, but can’t find one. Instead, you
try to prove the negation (¬(p → q)) is true, which would show that p → q is
false. ¬(p → q) ≡ p ∧ ¬q, meaning that you have to show that p ∧ ¬q is true.
As there’s no hypothesis, a direct proof would give you nothing with which
to work, and, unless you’ve read ahead, direct proof is the only technique you
know. Even with those other techniques, proving ¬(p → q) probably won’t be
easy.

All is not lost – proving ¬(p → q) may still be a reasonable option if you
think about what p → q represents. Back at the start of section 4.2.3 we
mentioned that in this chapter the p → q notation was a stand-in for the
more complete ∀x(P (x) → Q(x)), x ∈ D quantified predicate notation. In the
following example, that quantified notation will be very helpful.

Example 90:

Problem: Disprove the conjecture of Example 88 (2n is even for all n ∈ Z
∗)

again, this time without using a counter-example.

Solution: Let E(n) : 2n is even, n ∈ Z
∗, and note that our conjecture does

not have an explicit hypothesis. That is, the conjecture can be expressed
as ∀n (T → E(n)), with the same domain. T → E(n) ≡ E(n) (by the
Law of the True Antecedent), allowing us to represent the conjecture as
∀n E(n).

To verify that ∀n E(n) is false without using a counter-example, we
need to prove that its negation (¬ ∀n E(n)) is true. By Generalized De
Morgan’s Laws, ¬ ∀n E(n) ≡ ∃n ¬E(n). In conversational English:
There’s a non-negative integer that makes 2n odd.

To prove an existential conjecture, we just need to find one member of the
domain that makes the conjecture true. We already know the member:
n = 0. All that remains is to write this up more compactly.
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Disproof (Proof of the Negation): The conjecture can be ex-
pressed as ∀n E(n), n ∈ Z

∗, where E(n) represents ‘2n is even.’
Its negation is ∃n ¬E(n) (by Generalized De Morgan’s). This
negated conjecture is true, as the following proof shows:

Proof (Direct): Consider E(0). 0 ∈ Z
∗ and 20 = 1. There-

fore, ∃n ¬E(n) is true.

Because it is possible for 2n to be odd, the claim that 2n is
even for all n ∈ Z

∗ is false.

Please note that n = 0 is not a counter-example, because we aren’t ‘coun-
tering’ the original conjecture with it. Rather, n = 0 proves the negation
of the conjecture. Because the conjecture’s negation is an existential
statement, all we needed was an example to prove it. The proof of the
negation disproves the conjecture.

By the way, our little proof of the truth of ∃n ¬E(n) is a simple ex-
ample of a constructive proof (see section 4.2.3).

Having seen Example 90, it’s not hard to imagine this prove-the-negation
approach working on existential conjectures that we suspect are false. Imagine
you’re asked to show that ∃xA(x) is true. All you need is one example,
but try as you might, you can’t find one. Suspecting that the conjecture
is false, you look to prove its negation. By Generalized De Morgan’s Laws,
¬∃xA(x) ≡ ∀x ¬A(x). The negation is universally quantified, just as are
most of the conjectures we usually need to prove, meaning that a common
proof technique (such as direct proof) might be just what we need.

Example 91:

Problem: Prove or disprove: There exists an odd multiple of four.

Solution: This conjecture is clearly false, but let’s pretend that it’s more
of a challenge.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!



134 CHAPTER 4. DIRECT PROOFS

Because this is an existential conjecture, to prove it we only need one
example of an odd multiple of four to show that that conjecture is true.
Enumeration of multiples of four (. . . − 8, −4, 0, 4, 8, . . .) doesn’t help us
find one, making us think that the conjecture may be false.

To show that the conjecture is false, we can either find a counter-example
or prove the conjecture’s negation. Finding a counter-example for an ex-
istential conjecture isn’t easy, so we’ll try to prove the negation. Let
O(x) : x is an odd multiple of four.20 In logic notation, our conjecture
is ∃x O(x), where x ∈ Z. We can express its negation as a universal
quantification: ¬∃x O(x) ≡ ∀x ¬ O(x). In English: If x is a multiple of
four, it’s even. We can prove that easily.

Because the negation of the original conjecture is true, the conjecture
must be false. The following write-up is more terse than was that of Ex-
ample 90.

Disproof (Proof of the Negation): The given conjecture (an odd
multiple of four exists) is false because its negation (all multiples
of four are even) is true, as the following argument shows:

Proof (Direct): Let x be a multiple of four. x = 4k, k ∈ Z.
x = 4k = 2(2k). Therefore, all multiples of four are even.

Disproofs, even those containing proofs, don’t usually include much ex-
planation.

These disproof techniques are independent of proof techniques. We placed
the disproof section in this chapter because it makes sense to discuss disproofs
soon after proofs are introduced, not because they can only be used with
conjectures you first tried to prove with a direct proof.

20If you said to yourself, “Hey, that predicate should be expressed as multiple predicates!”,
you get an imaginary gold star. If you said that aloud in a public place, try to act like you
don’t care what other people think. To keep this example short(er), we’re cheating on the
predicate. Writing it out as multiple predicates, performing the negation, and rewriting the
result in English should produce the result given above. But why take our word for it?
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