
Chapter 6

Additional Set Concepts

Appendix A presents the basics of sets, including notations, operators, and
visualizations with Venn diagrams. This chapter assumes that you know that
material. If you are feeling a lack of confidence in your knowledge of, for
example, set builder notation or the set difference operator, please review
that section before continuing.

6.1 What is So Important about Sets?

A good working knowledge of sets is essential in the study of discrete struc-
tures. We will define relations, and soon after, functions, in terms of sets. Re-
lational database management systems (RDBMSes) are based on set theory.
The concept of finite probability is defined by the ratio of two set cardinal-
ities. If you know data structures such as arrays and linked lists, you likely
recognize that they are representations of collections – often sets – of values.

Beyond this class, you may find yourself studying topics in theoretical
computer science. Many of those ideas are defined using sets.

Example 99:

Problems in computing that can be solved by performing a quantity of
operations that is related polynomially to the size of the problem are
known as polynomial-time (P) problems. Many sorting algorithms have
this property. For example, insertion sort’s quantity of operations per-
formed is proportional to n2 in the worst case, where n is the number of
values being sorted.
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152 CHAPTER 6. ADDITIONAL SET CONCEPTS

Problems whose solutions can be verified (just checked for correctness,
not necessarily discovered) in polynomial time are known as NP (non–
deterministic polynomial time) problems. Again using sorting as an
example, we can easily check that a list of values is sorted using a quantity
of operations that can be described by a linear function. Because linear
functions are polynomial, sorting is an NP problem as well as a P problem.

Are all problems in both sets? That is, are the two sets equal? No
one knows; it’s arguably the most important open question in computer
science. Computer scientists and mathematicians are pretty sure these
sets are not equal; we just haven’t been able to prove it (or disprove it).

Why, then, are we pretty sure? Because we know of hundreds of prob-
lems for which no efficient solution (that is, no polynomial-time solution)
is known. One example is the partitioning problem. Consider the set of
integers {1, 3, 4, 5, 6, 9, 12}. Can these values be divided into two subsets
such that all of the values are included and the sums of the values in each
subset are equal? The answer is ‘yes,’ both {1, 3, 4, 12} and {5, 6, 9} have
values whose sums are 20. This probably doesn’t sound like a very hard
problem, and it isn’t when the quantity of values is very small, because
we can easily enumerate all possible subsets. But imagine that you had
to find two such subsets from a set of cardinality 500. The only known
algorithm that is guaranteed to find a solution, if one exists, is the algo-
rithm that enumerates all possible subsets. As we will see when we cover
counting, the number of possible subset pairs is exponential, not poly-
nomial, in the cardinality of the original set. For that set of cardinality
500, you’d have to examine a ridiculous quantity of subsets.1 The lack of
a better algorithm probably means that this a hard problem.

6.1.1 Sets vs. Logic

Set theory, like proof theory, is frequently considered to be part of mathemat-
ical logic because set theory is built on a foundation of logic. As such, much

1Specifically, 2500−1
− 1 = 1, 636, 695, 303, 948, 070, 935, 006, 594, 848, 413, 799, 576, 108,

321, 023, 021, 532, 394, 741, 645, 684, 048, 066, 898, 202, 337, 277, 441, 635, 046, 162, 952, 078,

575, 443, 342, 063, 780, 035, 504, 608, 628, 272, 942, 696, 526, 664, 263, 794, 687. See what hap-
pens when you waste time reading footnotes?
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6.1. WHAT IS SO IMPORTANT ABOUT SETS? 153

of what we will learn about sets has direct parallels with the material we have
already covered in Chapter 1. In fact, in this chapter we will spend a fair
amount of time explaining how set operators can be defined using logic, and
how set identities can be proven using logic.

Thus, it would be incorrect to say that set theory and first-order logic
are competitors. They are two systems of expression and reasoning that are
closely related. If you are coming into this chapter feeling confident that its
content will be easier to follow than the logic chapters because sets already
make sense to you, great! Hopefully, the connections we will make between
sets and logic will help you understand logic even better, without destroying
that warm, fuzzy feeling you have for sets.

6.1.2 Limitations of Sets

Set theory, like logic, doesn’t provide the tools necessary to describe everything
we might like to describe. This admission shouldn’t cause you to lose faith in
mathematics in general and computer science in particular. It’s clear that the
foundations of these fields of study are useful, because computers do work,
we are able to launch satellites into orbit, etc. But, just as screwdrivers and
hammers are both useful tools for different tasks, set theory is most useful for
what it is designed to describe.

Where does set theory start to lose its usefulness? The next example
exposes a classic difficulty in basic (a.k.a. fundamental, naive) set theory that
is also a good example of a paradox, paradoxa statement that contradicts itself, usually
in a mind-boggling way.

Example 100:

Consider a men’s football team with one player who is a barber. The
coach insists that every man be clean-shaven; that is, no player has a
moustache or a beard. The barber happily shaves all of the players —
but only those players — who do not shave themselves. Who shaves the
barber?

That doesn’t sound hard to answer: He shaves himself, of course. But
consider the conditions of the question again. The barber isn’t allowed to
shave himself; remember, he shaves the players who do not shave them-
selves. Thus, the barber must shave himself (he can’t go to the barber;
he is the barber!) but cannot shave himself (the barber shaves only those
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154 CHAPTER 6. ADDITIONAL SET CONCEPTS

Figure 6.1: “My brain hurts!” Credit: Monty Python’s Flying Circus, Season
3, Episode 6 (“The War Against Pornography”), “Gumby Brain Specialist.”

players who do not shave themselves).

This is known in set theory as the Barber Paradox, and is the standard
example used to illustrate the more formal Russell’s Paradox, raised by
logician Bertrand Russell in 1901 as a demonstration of a problem with
basic set theory. We know that we can have a set of sets; that is, a set
can be a member of a set. Consider the idea of a set that is not a member
of itself. Now let’s create a collection of such sets: Let S be a set of the
sets that are not members of themselves. Is S a member of itself? If it is
not (that is, if S 6∈ S), then by its definition S must be ∈ S. But if S is a
member of itself (S ∈ S), the definition is violated. The realization that
S must both be and not be a member of itself is the paradox. In logic:
S ∈ S ↔ S 6∈ S, where S = {s | s 6∈ s}.

How’s your brain doing? Happily, there’s a solution to Russell’s Paradox:
Adopt a more restrictive view of sets, such as an ‘axiomatic’ set theory. Es-
sentially, an axiomatic set theoryaxiomatic set theory is one that adds a group of axioms (‘ground
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6.2. LOGICAL REPRESENTATION OF BASIC SET OPERATORS 155

rules’) to the basic set ideas so that problems like Russell’s Paradox can no
longer arise. For our purposes, knowing that there is a solution to such prob-
lems is enough.2

6.2 Logical Representation of Basic Set Operators

Expressing set operators using logical notation may seem to be a purely in-
tellectual exercise. After all, we can use the operators just fine given their
descriptions in English. Without the logic, though, proving set properties that
use those operators requires exhaustive enumerations, much like the truth ta-
bles we used to prove logical identities. By expressing set operators in logic,
we can employ the logical identities we’ve already proved (or could prove if
necessary), hopefully saving time and effort.

6.2.1 Logical Representations of Union, Intersection,

Difference, and Complement

All four of the set operators union (∪), intersection (∩), difference (−), and
complement (2) accept a set or two as operands and produce a set as their
result. To represent them in logic, then, we need a notation that allows us to
describe their behavior with logic but produce a set. Fortunately, we already
have one: Set-builder notation (see A.3.1).

Let’s start with union. In Appendix A, we described the union of two sets
as being “a binary operator that combines the elements from the two operand
sets into a single result set.” Thus, an element is in the result if it is found in
the first operand set or the second operand set. Because an element found in
both operand sets is included in the result, we need an inclusive OR. That’s
all we need to know to express union logically:

A ∪ B = {c | c ∈ A ∨ c ∈ B}
Intersection can be expressed almost exactly the same way. To be in the

result, an element must be in the first operand set and the second:

D ∩ E = {f | f ∈ D ∧ f ∈ E}
Remembering which logical operator pairs with each of these set operators

is easy. Operators that open in the same direction go together: ∩ goes with
∧ (both open to the bottom) and ∪ goes with ∨ (both open to the top).

Difference requires a little more thought to express in logic. Difference
‘keeps’ all of the elements of the first operand set, unless the element is also

2If you would like to read about a specific example of an axiomatic theory of sets, look
up “ZFC” (Zermelo-Fraenkel set theory with the Axiom of Choice).
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156 CHAPTER 6. ADDITIONAL SET CONCEPTS

found in the second set. That is, an element is in the result set when it is a
member of the first set and not a member of the second:

G − H = {i | i ∈ G ∧ i 6∈ H}
Complement is the only unary operator of this group, which makes it the

easiest to express in logic. The complement of a set is the set of all of the
other elements in the universe; that is, everything not in the operand set:

J = {k | k 6∈ J}
At this point, you may be wondering if set membership itself can be –

should be! – expressed logically, too. After all, it can easily be viewed as a
predicate. In practice, we think of set membership as a concept of sets, rather
than an operation on a set. As such, we don’t consider it to be an operator,
though we use it like one.

6.2.2 A New Set Operator: Cartesian Product

A very useful set operator, Cartesian Product pairs up elements of its operand
sets. Before we can define Cartesian Product, we need to understand how to
combine set elements into an ordered pair.

Definition 27: Ordered Pairordered pair

An ordered pair (denoted “(a, b)”) is a two-element pairing of set elements
in which position matters.

The word “ordered” is important, as Example 101 demonstrates.

Example 101:

Let S = {4, 6, 2}. (2, 4) is an ordered pair of elements from S.

(4, 2) is a different ordered pair of A’s elements. That is, (2, 4) 6= (4, 2).
This distinguishes ordered pairs from sets of cardinality two, where order
doesn’t matter: {2, 4} = {4, 2}.

Now we can define Cartesian Product in terms of ordered pairs.
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6.2. LOGICAL REPRESENTATION OF BASIC SET OPERATORS 157

Definition 28: Cartesian Product cartesian product

The Cartesian Product of two sets L and M , denoted L × M ( LATEX :
\times), is the set of all possible ordered pairs (l, m) such that l ∈ L and
m ∈ M .

In logic: L × M = {(l, m) | l ∈ L ∧ m ∈ M}

This definition is limited to just two operand sets. We can generalize the
idea to work with more than two operands, and will soon. However, to start,
we’ll stay within this definition.

Example 102:

Problem: Compute {K, Q} × {♣, ♦, ♥, ♠}.

Solution: We need to pair each element of the first set with each element of
the second, in that order, to form all of the ordered pairs of the result set.
The result: {(K, ♣), (K, ♦), (K, ♥), (K, ♠), (Q, ♣), (Q, ♦), (Q, ♥), (Q, ♠)}

Note that this shows us a way to define the common French deck of 52
playing cards as a set of ordered pairs: {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2}×
{♣, ♦, ♥, ♠}.

When enumerating the result of a Cartesian Product manually, it is impor-
tant to be systematic, so that no ordered pairs are missed or are duplicated.
Counting the quantity of ordered pairs generated and comparing that sum
against the fact that |L × M | = |L| · |M | can detect simple errors. Con-
tinuing Example 102, we can verify that our French deck must consist of
|{A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2}| · |{♣, ♦, ♥, ♠}| = 13 · 4 = 52 ordered pairs
(a.k.a. cards).

Example 103:

Problem: Compute ∅ × {1, 2}.

Solution: To create an ordered pair, we need one element from each
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158 CHAPTER 6. ADDITIONAL SET CONCEPTS

operand set. As the empty set has no elements, there can be no ordered
pairs. Thus, ∅ × {1, 2} = ∅.

As mentioned above, although we won’t have a lot of need for it in this
book, computing Cartesian Products of more than two sets, or, equivalently, of
sets of ordered pairs, is a straight-forward extension of the two-set definition.
The results are sets of n-tuples (ordered lists of n elements each).

Example 104:

Problem: Compute {a, b} × {∞} × {3, 5}.

Solution: The result is {(a, ∞, 3), (a, ∞, 5), (b, ∞, 3), (b, ∞, 5)}. Let’s see
how to compute this one Cartesian Product at a time.

We work left to right. The result of the first operator is as expected:
{a, b} × {∞} = {(a, ∞), (b, ∞)}.

Before computing the second operator’s result, it’s helpful to think of
{3, 5} as being a set of 1-tuples: {(3), (5)}. That’s what it really is;
we don’t ordinarily include the parentheses because there aren’t multiple
values for them to group together. But, adding the parentheses makes it
easier for us to see that we are creating the Cartesian Product of a set of
2-tuples with a set of 1-tuples, which will form the set of 3-tuples listed
above: {(a, ∞, 3), (a, ∞, 5), (b, ∞, 3), (b, ∞, 5)}.

In general, the idea of Example 104 is called an n-ary Cartesian Product.

Definition 29: n-ary Cartesian Productn-ary cartesian prod-

uct
The n-ary Cartesian Product of n sets S1 through Sn, S1 × S2 × . . . × Sn,
produces the set of n-tuples {(s1, s2, . . . , sn) | si ∈ Si}.

The quantity of n-tuples in the resulting set is the product of the cardi-
nalities of the n operand sets: |S1 × S2 × . . . × Sn| = |S1| · |S2| · . . . · |Sn|.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!



6.3. SOME USEFUL SET CONCEPTS 159

You’re probably wondering: “Why isn’t the result of Example 104 written
as {((a, ∞), 3), ((a, ∞), 5), ((b, ∞), 3), ((b, ∞), 5)}?” That is another way to
view things, but it’s not how the generalization of Cartesian Product is defined.
This is a practical choice: In a later chapter, we’ll see that n-tuples (and n-
ary Cartesian Products) are used by relational database systems to store (and
process) data. This isn’t to say that the concept of ordered n-tuples that
contain other ordered n-tuples doesn’t have uses; it does (for example, see
nested lists in the programming language Scheme), but they aren’t as common
in set theory.

6.3 Some Useful Set Concepts

Appendix A introduced the idea of set membership. Earlier in this chapter we
said we’ll consider set membership to be a concept rather than an operator,
even though it could be viewed as an operator. There are other set concepts
that must be understood in order to use sets, and much of the rest of this
book, effectively. In this section we introduce them. We won’t call any of
these concepts operators, either, although cases could be made for many of
them.

6.3.1 Subsets

Imagine a class of students. Some of them will end the term with the highest
grade allowed by the school. That group may be considered a subset of the
original set of all of the students in the class, because it contains only students
that are members of that set of students. Sounds simple enough, but what if
no student earns that highest grade? Is that set (the empty set) considered a
subset of the class? And what if all of the students earn that grade? Is the
class a subset of itself? Such extreme cases are why there are two definitions
of ‘subset’ for us to learn.

Definition 30: Subset subset

Set N is a subset of set O (denoted N ⊆ O, LATEX: \subseteq) when
every element of N is also an element of O. Equivalently, O is a superset

of N (O ⊇ N , LATEX: \supseteq).

In logic: N ⊆ O ≡ ∀p (p ∈ N → p ∈ O), p ∈ U
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160 CHAPTER 6. ADDITIONAL SET CONCEPTS

This definition deserves some explanation. First, notice that the logical
expression for subset doesn’t use set builder notation. This is because the
‘result’ of subset is a logical value (true or false) instead of a set: Either N is
a subset of O or it isn’t. This explains why we use ≡ instead of =; sets can
be equal but logical expressions are equivalent.

Time to start considering those extreme cases. The definition doesn’t
directly address them, but we can infer how they are handled. Let’s start
with the situation in which N = O. Is N ⊆ O? That is, is a set a subset of
itself? Clearly, yes. The definition says that N is a subset of O when all of
N ’s content is found within O. This is certainly the case when the sets have
the same content.

Now consider the other extreme, when |N | = 0 (that is, N = ∅). Is ∅ ⊆ O

true? Yes! The empty set has no elements. Vacuously, all of its elements are
found within O. For this reason, the empty set is considered to be a subset of
any set, even itself.

We’ll see some examples after we introduce the other subset definition:
proper subset.

Definition 31: Proper Subsetproper subset

Set Q is a proper subset of set R (denoted Q ⊂ R, LATEX: \subset) when
Q ⊆ R but Q 6= R. Equivalently, R is a proper superset of Q (R ⊃ Q,
LATEX: \supset).

In logic: Q ⊂ R ≡ ∀s (s ∈ Q → s ∈ R) ∧ ∃t(t 6∈ Q ∧ t ∈ R), where s, t ∈ U

(Be aware that some people use the symbol ( ( LATEX: amssymb’s \subsetneq)
for proper subset.)

The difference in meaning between ⊆ and ⊂ is simple (a set is a subset of
itself but not a proper subset of itself), but expressing that difference logically
takes some work. To show that two sets Q and R are not equal, we say that R

has an element that Q does not. We say it that way in this definition because
|Q| < |R| when Q ⊂ R.

People sometimes have trouble keeping the meanings of ⊆ and ⊂ straight.
This observation usually helps: Think of the symbol ⊆ as the result of the
merging of the symbols ⊂ and =. This justifies the inclusion of the single
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horizontal line in the symbol for subset, and reminds us that the idea of set
equality is included in the definition of subset.

Example 105:

The following table shows the similarities of and differences between the
subset operators:

S T S ⊆ T? S ⊂ T?
(a) {1, 2} {1, 2, 3} true true
(b) {4, 5} {5} false false
(c) {6} {6} true false
(d) ∅ {7} true true
(e) ∅ ∅ true false
(f) {∅} {∅, 8} true true

The examples of line (d) follow from the fact that the empty set is con-
sidered to be a subset (and proper subset) of any non-empty set. Line
(e) mirrors line (c); as with any other set, the empty set is a subset but
not a proper subset of itself. Line (f) is included to make the point that
sets can contain other sets, even the empty set, as elements, and when
they do, the subset definitions don’t change. That is, in line (f), you
could replace the two occurrences of ∅ with another set, say {9}, and the
results would be the same.

6.3.2 Set Equality

Set equality sounds like a concept that’s so basic that it should have been
covered back in Appendix A. We saved it for this chapter because its definition
can be so easily expressed using the idea of subset.

Definition 32: Set Equality set equality

Sets V and W are equal (denoted V = W ) iff V ⊆ W and W ⊆ V .
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We aren’t providing the logical version of equality because it’s a straight-
forward application of the logical construction of subset.

Example 106:

Let S = {7, 15, 16} and T = {16, 7, 15}. Applying the set equality defini-
tion, we see that S = T because both S ⊆ T and T ⊆ S are true.

We can reach the same conclusion by inspecting the set elements. Despite
the different orderings of the elements, S and T have the same cardinality
and contain the same elements. The subset-based definition is more gen-
erally useful than is the inspection approach. For example, it will serve
as the foundation of set equality proofs by cases in Section 6.4.2.

Example 107:

Problem: Let A = ∅ and B = {∅}. Does A = B?

Solution: No, because these are different sets with different cardinali-
ties: |A| = 0 (the empty set has no elements) and |B| = 1 (the empty set
is the only element of B).

6.3.3 Power Sets

A companion idea to subset is that of power set.

Definition 33: Power Setpower set

The power set of a set S (denoted P(S), LATEX: \mathcal{P}), is the
set of all of S’s subsets.

There are a variety of symbols that are used to represent a power set, but
this calligraphic ‘P’ is the most commonly used today.
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Remember that the empty set is a subset of any set, making the empty
set an element of any set’s power set. Also remember that the definition of
power set is based on the definition of subset, not of proper subset, meaning
that the set itself is another member of the power set.

Example 108:

Problem: Let A = {e, f, g}. What is P(A)?

Solution: Computing power sets is one of those activities that attracts
silly mistakes like a kitchen floor attracts the buttered side of toast. To
reduce the chance of an error, be systematic when listing the subsets:
Start with all of the subsets of size 0, then list those of size 1, etc., ending
with those of size |A|.

There is just one subset of size 0: The empty set. There are |A| = 3
subsets of size 1: {e}, {f}, and {g}. There are also three subsets of size
2: {e, f}, {e, g}, and {f, g}. Finally, the set itself is the only subset of
size 3. Thus, P(A) = {∅, {e}, {f}, {g}, {e, f}, {e, g}, {f, g}, {e, f, g}}.

A tidbit of useful power set information: |P(S)| = 2|S|. Combined with a
systematic listing of the subsets by size, knowing this can help you with power
set problems that might seem baffling at first glance.

Example 109:

Problem: Let E = {∅, {∅}}. What is P(E)?

Solution: Let’s start by using what we just learned: |P(E)| = 2|E| =
22 = 4. Now we just have to identify those four subsets.

Two are easy: All sets have the empty set and itself as subsets. We
just need the other two, which each must be of size 1, as we’ve covered
size 0 and size 2. Each of these two subsets must contain one of the
individual elements of E. We’re done: P(E) = {∅, {∅}, {{∅}}, {∅, {∅}}}.

If you’re wondering how to prove that |P(S)| = 2|S|, great! See the count-
ing chapter for the proof.
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6.3.4 Disjoint Sets

Sets that have no common elements are disjoint.

Definition 34: Disjoint Setsdisjoint sets

Sets S and T are disjoint sets when S ∩ T = ∅.

There is no recognized symbol for disjoint sets.

Example 110:

Problem: Explain why the sets {i, k, m, o, q} and {r, p, n, l, i} are not dis-
joint.

Solution: By the definition of disjoint sets, for these sets to be disjoint
the intersections of these sets must be the empty set. These sets have
the element i in common; that is, {i, k, m, o, q} ∩ {r, p, n, l, i} = {i} 6= ∅.
Thus, these sets are not disjoint.

Example 111:

Problem: Consider the set C = {a, e}. How many subsets of the universe
U = {a, e, i, o, u} are disjoint with C?

Solution: We need to figure out how many subsets there are of U that do
not contain a or e. This is the same as asking how many subsets there
are of {i, o, u}. We already know that answer, because that collection of
subsets is the power set of {i, o, u}, and its cardinality is 2|{i,o,u}| = 8.
There are 8 subsets of {a, e, i, o, u} that are disjoint with C.

Example 111 is a good demonstration of how complex problems can be
made much less so by looking at the problem from a different point of view.
We could find the answer by listing all of the subsets of a five-element universe
(all 32 of them) and counting those that do not contain a or e. A little thought
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saved a lot of work. We will see this problem-solving technique frequently in
the counting chapter. (And yes, this example is a counting problem!)

The idea of disjoint sets can be easily extended to more than a pair of sets
by computing all of the pairwise intersections of the sets and verifying that
all of those intersections are empty.

Example 112:

Problem: Are the sets {11, 15}, {19}, {10, 13, 14, 16}, and {12, 15, 18} all
disjoint from one another?

Solution: No, because there is one pair of sets (the first and the fourth)
that share 15.

6.3.5 Partitions

We need to make a brief detour into the ideas of generalized union generalized unionand gener-

alized intersection, generalized intersectionbecause we need generalized union to conveniently define
the idea of a partition.

We know that the symbol ∪ is used to represent the union of two sets.
But what if we have a large group of sets and want to represent the unioning
of all of them? Instead of creating a massive expression (A ∪ B ∪ C ∪ . . .),
we can create a short-cut in the same way that we use Σ to represent a large
summation. That is:

n⋃

i=1

Si = S1 ∪ S2 ∪ . . . ∪ Sn.

( LATEX : \bigcup\limits, or just \bigcup for a more compact version.)
Similarly, we can use

⋂
( LATEX: \bigcap) to represent a lengthy intersection

expression. End of detour!
Partitions of a set are closely related to the idea of disjoint sets, as the

definition makes clear.

Definition 35: Partition partition
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Non-empty sets S1, S2, . . . Sn form a partition of a base set B when
⋃n

i=1 Si = B and Sj ∩ Sk = ∅ for all j, k such that 1 ≤ j, k ≤ n.

That is, a group of sets is a partition of B if (a) each set is non-empty,
(b) each element of B is found in one of the sets, and (c) all of the sets of the
group are disjoint from one another.

Example 113:

Problem: Together, are the set of odd integers (Zodd) and the set of even
integers (Zeven) a partition of Z?

Solution: Yes! All integers are either odd or even (yes, zero, too; it’s
even), and no integer is both. Because Zodd and Zeven are not empty, ev-
ery integer is either ∈ Zodd or ∈ Zeven (not both), and Zodd ∪ Zeven = Z,
Zodd and Zeven form a partition of Z.

Let’s revisit Example 112’s sets from the perspective of a partition.

Example 114:

Problem: Collectively, are the sets {11, 15}, {19}, {10, 13, 14, 16}, and
{12, 15, 18} a partition of the set B = {i | 10 ≤ i ≤ 19, i ∈ Z}?

Solution: (This is going to sound familiar . . . ) No, because there is
one pair of sets (the first and the fourth) that share 15. For the group to
be a partition, each element must be a member of exactly one set.

Let’s drop the second occurrence of 15 and try it again.

Example 115:

Problem: Are the sets {11, 15}, {19}, {10, 13, 14, 16}, and {12, 18} a par-
tition of the set B = {i | 10 ≤ i ≤ 19, i ∈ Z}?
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Solution: Again, no, but for a different reason. For the collection of
sets to be a partition, each value of the base set B must be included in
one of the sets. |B| = 10 but the sum of the cardinalities of the partition
sets is just 9. The element 17 is missing.

6.4 Set Identities

The connection between logic and sets extends to their collections of identities.
In this section, we will see that these identities are very similar (which is good,
as it means that they are easier to remember and to apply). Just as logical
identities (see Section 1.5.2) are useful in proving the equivalence of logical
expressions, set identities are useful in proving set equivalences. We can also
‘jump’ between set and logic notations to prove the set identities, should we
feel the need.3

6.4.1 Common Set Identities

As we did with the logical identities back in Chapter 1, we have divided the set
identities into separate tables by the set operators they use. Our collection of
set identities isn’t nearly as extensive as is our lists of logical identities. That’s
not to imply that set identities are less important; rather, we don’t have as
many operators. We don’t have corresponding set operators for exclusive-
OR, implication, and biimplication.4 We do have set difference and Cartesian
Product, but the latter makes sets of ordered pairs, not of basic elements,
with the result that it doesn’t ‘mingle’ well with the others.

Table 16: Some Set Identities using Union (∪) and Intersection
(∩)

3And we will!
4Before those of you with set theory backgrounds — you know who you are — get too

worked up about this claim, remember that this chapter didn’t cover symmetric difference,
and we aren’t considering subset and proper subset to be operators. Still need to get lathered
up? Please address all complaints to /dev/null.
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(a) S ∩ S = S Idempotency

S ∪ S = S

(b) S ∩ ∅ = ∅ Domination

S ∪ U = U

(c) S ∩ U = S Identity

S ∪ ∅ = S

(d) S ∩ T = T ∩ S Commutativity

S ∪ T = T ∪ S

(e) S ∩ (T ∩ W ) = (S ∩ T ) ∩ W Associativity

S ∪ (T ∪ W ) = (S ∪ T ) ∪ W

(f) S ∩ (T ∪ W ) = (S ∩ T ) ∪ (S ∩ W ) Distributivity

S ∪ (T ∩ W ) = (S ∪ T ) ∩ (S ∪ W )

(g) S ∩ (S ∪ T ) = S Absorption Laws

S ∪ (S ∩ T ) = S

Table 17: Some More Set Identities (adding Complement (2))

(a) S = S Dbl. Complement (Involution)

(b) S ∩ S = ∅ Complement Laws

S ∪ S = U

(c) S ∩ T = S ∪ T De Morgan’s Laws

S ∪ T = S ∩ T

Table 18: Still More Set Identities (adding Difference (−))
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(a) S − T = S ∩ T Definition of Difference

(b) S − T = S − (S ∩ T )

(c) S − S = ∅

(d) S − ∅ = S

(e) ∅ − S = ∅

(f) S − U = ∅

(g) U − S = S

6.4.2 Proving Set Expressions

You probably remember that, in Chapter 1, we demonstrated how to prove the
truth of logical equivalences. At the time, we didn’t know what a ‘proof’ was,5

but now we know that what we were doing was constructing straight-forward
direct proofs. We will do the same sort of thing to prove set expressions.

Let’s ease into these proofs by starting with an easy one. On rare occasions,
we get lucky and are asked to prove something that’s covered by a definition.

Example 116:

Problem: Prove or disprove: A ⊆ P(A), where A is a set.

Solution: Of course, we already know that a set’s power set contains
the set itself, but we can’t hold our noses in the air, sniff derisively, and
walk stiffly away, in search of a conjecture that is up to our standards.
We need to prove it if we can, and we definitely can.

Proof (Direct): By definition, the power set of a set S is the set
containing all of S’s subsets. Because every set is a subset of itself
(according to the definition of subset), each set is an element of
its own power set.

Therefore, A ⊆ P(A).

5Ah, those happier days of our youth . . .
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Figure 6.2: Mark Messier, Hall of Fame hockey player and now namesake of
all inelegant proofs. (Credit: NY Daily News)

We hope you enjoyed Example 116; the rest of the examples will be much
messier.6

Example 117:

Problem: Prove or disprove: If A ⊂ B and B ⊆ C, then A ⊂ C.

Solution: As always, it’s a good idea to check that the conjecture is
worth trying to prove. A quick Venn diagram (see Figure 6.3) suggests
that the conjecture holds.

To create a formal proof, we will make use of our old friend, logic. We

6Yes, this word is the entire justification for Figure 6.2. We should be ashamed, but
aren’t.
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•
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A
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U

Figure 6.3: Yes, when A ⊂ B and B ⊆ C, it seems that A ⊂ C is true. (See
Example 117.)

know how to express ⊂ and ⊆ logically, and we know lots of logical equiva-
lences and several common rules of inference. We’ll just put some of them
to work. Here’s the complete proof; a dissection follows.

Proof (Direct): Assume that the elements represented by d and
e, below, are members of the same universe as are the elements of
the sets A, B, and C.

(1) A ⊂ B [ Given ]
(2) B ⊆ C [ Given ]
(3) ∀d(d ∈ A → d ∈ B) ∧ ∃e(e 6∈ A ∧ e ∈ B) [ 1, Def. of ⊂ ]
(4) ∀d(d ∈ B → d ∈ C) [ 2, Def. of ⊆ ]
(5) ∀d[(d ∈ A → d ∈ B) ∧ (d ∈ B → d ∈ C)] ∧ ∃e(e 6∈ A ∧ e ∈ B)

[ 3, 4, Conjunction ]
(6) ∀d[(d ∈ A → d ∈ B) ∧ (d ∈ B → d ∈ C)] ∧ ∃e(e 6∈ A ∧ e ∈ C)

[ 5, Modus Ponens ]
(7) ∀d(d ∈ A → d ∈ C) ∧ ∃e(e 6∈ A ∧ e ∈ C) [ 6, Hypo. Syll. ]
(8) ∴ A ⊂ C [ 7, Def. of ⊂ ]

Therefore, if A ⊂ B and B ⊆ C, then A ⊂ C.

We have two useful pieces of given information, making a direct proof
seem like a good choice of proof technique. As it does for logical proofs,
a tabular format works well for set proofs, although, as you can see, the
lines can get a little long.
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We begin with the givens (lines 1 and 2), and express them logically
(lines 3 and 4). We did not include “d, e ∈ U” on lines 3 through 7 in the
interest of space, instead opting to pre-declare them on the first line of
the proof block.

The proof gets more interesting in line 5, where we combine the universal
quantifications from lines 3 and 4. We can do this because a univer-
sal quantification is just that: Universal. Both d ∈ A → d ∈ B and
d ∈ B → d ∈ C are assumed true for all elements, which we can say in
one statement rather than two. We aren’t required to combine them in
order to complete the proof, but doing so allows us to show that such a
merger is possible.

Line 6 differs from Line 5 by just one character: The last B is replaced
by a C. Here’s how we can justify making that replacement. We know,
from Line 5, that there’s an element in B (∃e(e ∈ B)). We also know
that if e ∈ B, then e ∈ C, by the universal quantification portion of Line
5. By Modus Ponens, we know that e ∈ C follows.

At this point, the odds are good that you have at least one of these
two questions: “Why do we have to make that one-letter change?”, and
“e ∈ B is still assumed true, so why isn’t it still in the expression of Line
6?” One answer covers both questions. We know our destination: A ⊂ C.
To get there, we need to be able to assume that ∃e(e 6∈ A∧e ∈ C). e ∈ B

is indeed still assumed to be true, but it’s no longer useful to us, so we
dropped it. Keeping it just adds unnecessary clutter to our already well-
cluttered proof.

Line 7 neatly follows from Line 6, thanks to Hypothetical Syllogism on
d ∈ A → d ∈ B and d ∈ B → d ∈ C. The resulting expression is exactly
the logical form of A ⊂ C. Making sure that the reader recognizes that
completes the argument.

A common type of set proof requires showing that two set expressions S

and T are equal; that is, that they describe the same set of elements. Here
are two possible approaches to this type of conjecture:

1. Follow the definition of set equality: Prove that both S ⊆ T and T ⊆ S

are true, using the logical expression for ⊆.
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2. Express one side in terms of set builder notation and logical operators,
prove, and convert back to set notation.

The latter is usually less work, but the former is good to know, because it also
shows how to prove subset (and proper subset) expressions.

To make the two approaches easier to compare and contrast, we will apply
them both to the same set expression. This expression looks like it should be
straight-forward to prove, and it is . . . if you choose the right approach. We
will start with the subset definition approach.

Example 118:

Problem: Prove or disprove: S − S = ∅.

Solution: Applying the definition of subset naturally leads to a two-part
proof, one for each ‘direction.’

Proof (Direct): By the definition of set equality, if S − S ⊆ ∅
and ∅ ⊆ S − S, then S − S = ∅. We will prove both parts.
Throughout, assume that y, z ∈ U .

Case 1: Consider S − S ⊆ ∅.

(1) S − S ⊆ ∅ = ∀z(z ∈ S − S → z ∈ ∅) [ Def. of ⊆ ]
(2) = ∀z(z ∈ S − S → F) [ Nothing ∈ ∅ ]
(3) = ∀z(z 6∈ S − S) [ Law of False Cons. ]
(4) = ∀z(z 6∈ {y | y ∈ S ∧ y 6∈ S}) [ Def. of Set Diff. ]
(5) = ∀z(z 6∈ {y | F}) [ Negation Laws ]
(6) = ∀z(z 6∈ ∅) [ Meaning of ∅ ]
(7) = T [ Still nothing ∈ ∅! ]

Case 2: Consider ∅ ⊆ S − S.

(1) ∅ ⊆ S − S = ∀z(z ∈ ∅ → z ∈ S − S) [ Def. of ⊆ ]
(2) = ∀z(F → z ∈ S − S) [ Nothing ∈ ∅ ]
(3) = ∀z(T) [ Def. of → ]
(4) = T [ Tautology ]

Therefore, S − S = ∅.
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Several of the steps of this proof rely on knowledge of the empty set.
For example, line 2 of Case 1 follows from the realization that the empty
set contains no elements, meaning that z ∈ ∅ must be false. A less clear
example from Case 1 is the step from line 5 to line 6. {y | F} looks
cryptic, but can be thought of as a trivial case for set builder notation.
Elements are in the set ‘such that false.’ That is, the condition for mem-
bership can never be true, and as no element can pass the inclusion test,
the set must be empty.

Case 2 is much less complex. The trickiest part is interpreting ∀z(T),
but doing so is easier if you think about truth tables and tautologies. In
a truth table, we can see that a logical expression is a tautology when
the last column contains only values of ‘true.’ Similarly, ∀z(T) says that
the condition is true for all elements of the universe. That’s as true
as it gets. Note that we could have included the same step in Case 1
(. . . ∀z(z 6∈ ∅) = ∀z(T) = T), but doing so wouldn’t have clarified the
argument.

If you didn’t get too consumed by the details of the first case of the proof
of Example 118, you may have noticed something interesting about the first
case: Hidden inside is a proof of the original conjecture! Example 118’s proof
is fine, but it’s far longer than the ‘convert to logic’ alternative, which is the
version hidden in the first case. Here’s that approach, as a stand-alone proof.

Example 119:

Problem: Prove or disprove: S − S = ∅.

Solution: As we’ve already created this approach as part of Example 118,
we’ll get straight to the proof.
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Proof (Direct): Assume that y ∈ U .

(1) S − S = {y | y ∈ S ∧ y 6∈ S} [ Def. of Set Difference ]
(2) = {y | F} [ Negation Laws ]
(3) = ∅ [ Meaning of ∅ ]

Therefore, S − S = ∅.

Short and sweet! This is clearly the technique to use to prove this con-
jecture, but Example 118 was much more educational.

These set proof examples have introduced a few new equalities and equiv-
alences that are handy to remember when writing set proofs. Table 19 has a
more complete list.

Table 19: Foundational Set Equalities and Equivalences

(a) ∀z(T) ≡ T Tautology
(b) ∀z(F) ≡ F Contradiction
(c) {z | T} = U “Such that true” means all elements are in the set
(d) {z | F} = ∅ “Such that false” means no elements are in the set

A reminder: Proof-writing is often a slow process that involves a lot of
‘wasted’ work, work that never appears in the final version that you show the
world. That can be frustrating, but remember that this happens to everyone
who writes proofs, paints, repairs cars, breathes, etc. The more proofs you
write, the better you will get at selecting an initial proof approach, and the
faster your brain will dig up useful answers to all of the “OK, now what do I
do?” questions.

6.5 Choosing a Set Representation

A set can be viewed as an unordered list without duplicate elements. This
naturally leads computer programmers to think of arrays, linked lists, trees,
and hash tables as possible data structures for set representations.
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An alternative way to look at the problem is to consider the operations
that need to be performed on sets. This is the subject of one of our favorite
programming mantras: “Choose the representation that best supports the
operations.” We are now very familiar with the typical set operations (and
operation-like characteristics such as subset). The question: Do any of those
classic linear data structures do a good job supporting set operations?

As this isn’t a data structures book, you won’t be subjected to an exhaus-
tive analysis. Instead, we will give a quick answer: Not really. OK, we can be
a little less quick. All of the data structures mentioned at the top of this sec-
tion can be used, but they all have their own advantages and disadvantages,
including operation efficiency (having an ordered representation makes some
operations more efficient to execute) and space (references stored in linked list
and tree nodes add storage overhead).

Example 120:

Java, starting with version 1.2, has offered a Set interface with none of
the basic set operators . . . at least not by the names we know them. For
example, addAll() and removeAll() are essentially union and difference,
respectively, while contains() can be used to construct intersection.

This interface is supported by classes such as HashSet and TreeSet,
which, as their names suggest, use a hash table and a tree (as of this
writing a Red-Black tree, a kind of balanced binary search tree) as their
representations. With this arrangement, Java allows programmers to se-
lect a representation that best fits their program’s needs.

A space-saving alternative representation for a set, one that also does a
remarkably good job supporting set operators, is a bit vector.bit vector Essentially, a
bit vector is just an array of bits. To use one as a set representation, we assign
each member of the universe a position in the vector. If the bit is ‘0’, the set
doesn’t contain the corresponding element; if it is ‘1’, the set does contain it.

Example 121:

Consider U = {1, 2, 3, 4, 5, 6, 7, 8, 9}. This means that we need a bit vec-
tor of nine bits in length. Let the left-most bit represent 1, the next 2,
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etc. Using that mapping, here are some examples of sets and their corre-
sponding bit vector representations.

Set Representation

{3, 4} 001100000

{1, 3, 5, 7, 9} 101010101

∅ 000000000

U 111111111

Are you concerned that, by using a bit vector, we are imposing an ordering
on the elements of U? We aren’t changing the definition of a set; the ordering
of the set elements is still irrelevant. {3, 4} and {4, 3} are still the same set.
Both sets just have the same representation when viewed as a bit vector,
which, as they are the same set, makes a lot of sense. Thus, the concept and
the representation need not possess exactly the same characteristics. What
matters is how well the representation supports the concept and its operations.

The second advantage of using bit vectors to represent sets is that most
set operations can be performed very efficiently. Computer central processing
units (CPUs) are designed to perform a relatively small collection of basic
operations very efficiently. Those operations almost always include bit-wise
logical operations such as AND and OR. A 64-bit CPU, for example, can AND
or OR together two 64-bit values, which means we can perform set intersection
and union operations on sets from a 64-element universe with a single CPU
instruction. 64 elements may not seem like a lot, but that’s more than the
quantities of upper- and lower-case letters in the modern Latin alphabet (26
each), and the quantity of Roman digits (10), combined. Table 20 shows how
the four basic set operations can be performed on bit vectors.

Table 20: Set and Corresponding Bit-wise Logical Operators

Set Operators Bit-wise Logical Operators

A ∪ B A ∨ B

A ∩ B A ∧ B

A A

A − B (= A ∩ B) A ∧ B

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!



178 CHAPTER 6. ADDITIONAL SET CONCEPTS

The fact that A−B = A∩B was introduced in Appendix A. If you are curious
how to perform these bit-wise logical operators in C or Java programs, see
Table 6 in Chapter 1.

Example 122:

Again let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Also assume that O = {1, 3, 5, 7, 9},
E = {2, 4, 6, 8}, and C = {4, 6, 8, 9}. As bit vectors, based on the
given element ordering of U , O = 101010101, E = 010101010, and
C = 000101011.

The following tables demonstrate each of the four set operators. Union,
intersection, and complement are straight-forward. Difference, because it
is a compound operator, requires an additional step.

Union:

O {1, 3, 5, 7, 9} 101010101

∪ E ⇒ ∪ {2, 4, 6, 8} ⇒ ∨ 010101010

U {1, 2, 3, 4, 5, 6, 7, 8, 9} 111111111

Intersection:

C {4, 6, 8, 9} 000101011

∩ E ⇒ ∩ {2, 4, 6, 8} ⇒ ∧ 010101010

{4, 6, 8} {4, 6, 8} 000101010

Complement:

O ⇒ {1, 3, 5, 7, 9} ⇒ 101010101

E {2, 4, 6, 8} 010101010

Difference:

E E {2, 4, 6, 8} 010101010

− C ⇒ ∩ C ⇒ ∩ {4, 6, 8, 9} ⇒ ∧ 111010100

{2} {2} {2} 010000000
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Bit vectors seem to be a great representation; they have both space effi-
ciency (just 1 bit of storage per element) and operation efficiency (operators
correspond to CPU instructions). Unfortunately, if we look more closely, prob-
lems appear, including:

1. We need to keep track of the mapping between the bit positions and the
elements of the sets,

2. Not all operators are bit-vector-friendly (e.g., Cartesian Product), and

3. Subsets of infinite sets cannot be represented.

Choosing a data representation means accepting tradeoffs. For example,
if we use a linked list as a set representation, we can store the set elements
directly (no mapping to bits needed) and we can store a subset of an infinite
set, but storing the sets will require much more space (to maintain the list
structure) and processing the operators will be considerably more expensive
(the lists must be traversed). Good software developers consider such issues
before settling on a representation . . . and they (usually grudgingly!) switch
to a new representation when one is needed.
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