
Chapter 7

Matrices

The word “matrix” has a variety of definitions.1 Not surprisingly, we are
interested in a definition used in mathematics:

Definition 36: Matrix matrix

A matrix is an n-dimensional collection of values, n ∈ Z
+.

Figure 7.1 shows examples of small one–dimensional and two–dimensional
matrices. We stop at two because comprehensible two–dimensional represen-
tations of three–dimensional matrices are hard to create. Happily, for this
book, one– and two–dimensional matrices are all that we will need.

7.1 The Utility of Matrices

The ACM/IEEE Computer Society produces curriculum guidelines for Com-
puter Science education, to help secondary and higher-education institutions
ensure that they are graduating students that possess a common core of basic
knowledge of the discipline. The section on Discrete Structures in the 2013
guidelines2 does not mention the words ‘matrix’ or ‘matrices’ at all. So why,
then, does this book devote a chapter to the topic?

1Such as: The area that produces the cells that become a fingernail is called the matrix.
Makes you think of the Matrix movie franchise in a new way, doesn’t it?

2ACM/IEEE-CS Joint Task Force on Computing Curricula, ACM Press and IEEE Com-
puter Society Press, December 2013. DOI: http://dx.doi.org/10.1145/2534860

181

182 CHAPTER 7. MATRICES

[

2 1729 87539319
]

[

9 −2 0 5
18 1 −6 7

]

Figure 7.1: One– and Two–Dimensional Matrices of Integers

There are several reasons to provide the basics of matrices in a discrete
structures book. For example:

• Chapter 8 covers a type of set known as a relation. There are multiple
useful ways to represent relations, one of which is a matrix representa-
tion.

• Another representation of relations is a data structure known as a graph.
Graphs, a generalization of tree data structures, are far more useful
than that one application. Matrices are used to represent graphs within
programs.

• Speaking of programs: If you are studying discrete structures, you have
almost certainly written a program that used an array data structure.
Many definitions of matrices define them in terms of arrays, which can
be confusing because the two words are often assumed to be synonyms.
An n–dimensional array and an n-dimensional matrix are essentially the
same thing.

• In computer graphics, matrices are used for a variety of purposes, in-
cluding 2D projections, affine transformations, and texturing. We will
present one computer graphics example later in this chapter (see Sec-
tion 7.5).

• Cryptography, the study of ways to encode messages such that only the
intended recipient can easily decode them, relies heavily on matrices.
The Advanced Encryption Standard (AES), for example, is based on a
sequence of matrix operations.

In short, a good working knowledge of matrices and their common op-
erations is essential to understand many topics in Computer Science, most
immediately the concepts of relations and graphs covered later in this book.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 183

[

2 1729 87539319
] (

1 3 5
)

1
3
6

0
1
4

Figure 7.2: Examples of Row and Column Vectors with Brackets and Paren-
theses

7.2 Matrix Fundamentals

7.2.1 Matrix Notations and Sizes

Figure 7.1 demonstrates how one– and two-dimensional matrices are often
drawn. The collections of values are bounded on the left and right with
brackets (a.k.a. square brackets), with the tiny bracket ‘tips’ on the tops
and bottoms of the symbols serving to limit the content vertically. Some
people prefer to use parentheses (a.k.a. round brackets) instead of brackets.

One–dimensional matrices can be presented as row matrices (a.k.a. row

vectors) or as column matrices (a.k.a. column vectors). The difference is
more than just a matter of taste, as we will see later in this chapter. Either
way, we still use brackets or parentheses to delimit their content, as shown in
Figure 7.2.

Just as we labeled predicates, propositions and sets, we label matrices,
usually with upper-case letters, as in:

T =
[

2 1729 87539319
]

To reference the values within a one–dimensional matrix, we use the lower-
case version of the matrix’s label and append a subscript, with the first value
(left-most for row matrices or top-most for column matrices) indexed with
one.3 Thus, in T , t1 = 2, t2 = 1729, and t3 = 87539319.

In two–dimensional matrices, we need two subscripts. By convention, the
first index is the row index, the second is the column index, and element m11

is in the upper-left corner. In our two–dimensional matrix from Figure 7.1:

3I know, I know. You’re a proud, card-carrying computer programmer, and know that,
for reasons of efficiency, most programming languages use zero-based indexing for arrays and
lists. Mathematics is just slightly older than computer science, so mathematicians got to
define matrix indexing. To facilitate communication, everyone, even the proudest computer
scientist, uses one-based indexing when discussing matrices.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

184 CHAPTER 7. MATRICES

M =

1 2 3 4
[]

1 9 −2 0 5
2 18 1 −6 7

=

[

m11 m12 m13 m14

m21 m22 m23 m24

]

m11 = 9 and m24 = 7. Should a matrix have more than nine rows or columns,
commas are added to separate the row and column values, as in m32,15 = 7.

We follow the same row–column ordering to define the size of a two–
dimensional matrix. M has two rows and four columns, and so is a 2 × 4
(read: “two by four”) matrix.

What about the size of a one–dimensional matrix? We can’t only say that
T , above, is a matrix of length three, because that alone doesn’t distinguish
between a row vector of length three and a column vector of length three. The
problem is solved by thinking of a vector as either a rather flat, or a rather
thin, two–dimensional matrix. Thus, T , a row vector, is a 1 × 3 matrix. A
column vector of n values is described as having a size of n×1. Once the type
of vector has been established, we can use a simplified notation for element
references. That is, t1 references the same element as does t11, t2 references
the same element as does t12, etc. Because we already know that T is a row
vector, the single-subscript notation is all that we need.

7.2.2 Basic Matrix Definitions (and One Operation)

We need to present a few definitions (one of which is really an operation)
before we encounter the numeric matrix operations that will be useful later in
the book. The first one is easy:

Definition 37: Square Matrixsquare matrix

A square matrix is a two–dimensional matrix in which the number of rows
equals the number of columns.

Square matrices are frequently used in computing. For that reason, you
will see many definitions of matrix representations and operations that require
operands to be square. Note that the next definition is not one of them!

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 185

T =
[

2 1729 87539319
]

U =

2
1729

87539319

V =

12 23
34 45
56 67

W =

[

12 23
34 45

]

X =

12 23
43 45
56 67

Y =

2
1729

87539319

Figure 7.3: Six Integer Matrices for Example 123.

Definition 38: Matrix Equality matrix equality

Matrices A and B are equal (denoted A = B) iff they share the same
dimensions and all pairs of corresponding elements are equal.

Example 123:

Consider the matrices in Figure 7.3. T and U have the same content, but
they have different sizes. Thus, T 6= U .

V and W match in all four of their corresponding elements (v11 = w11,
v12 = w12, etc.) but their sizes are not the same, so V 6= W .

V and X have the same size (3 × 2) but not all corresponding pairs
of values match (v21 6= w21, for example), so V 6= X.

There are two matrices that are equal: U = Y . Both are 3 × 1 column
vectors, and all three corresponding pairs of values are equal. Sure, the
two columns of values are formatted differently, but that is not a problem.

Note that only W in Figure 7.3 is an example of a square matrix.

Does Definition 38 allow for us to say that a matrix is equal to itself? For
example, referring again to Figure 7.3, can we say that W = W? Yes! W

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

186 CHAPTER 7. MATRICES

is the same size as itself, and all of its corresponding pairs of values match.
Thus, W = W .

Time for the operation masquerading as a matrix definition.

Definition 39: Transpositiontransposition

The transposition of an m × n matrix A is the n × m matrix AT in which
the rows of A become the columns of AT.

Example 124:

Consider this matrix S:

S =

1 5 9 13
2 6 10 14
3 7 11 15

To construct ST, write the elements of the first row vertically. Do
the same with the second row’s values, writing them vertically just to the
right of the column you formed from the first row’s content. Do the same
with the content of the third row. The result is the transpose of S:

ST =

1 2 3
5 6 7
9 10 11

13 14 15

Example 125:

Can vectors be transposed? Yes! Refer back to matrices T and U in
Figure 7.3. U = T T and T = UT. Because U = Y , we can also say that
Y = T T and T = Y T.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 187

A generalization of Example 125 is worth remembering: Given a matrix

A, the transpose of the transpose of A equals A. In notation,
(

AT
)T

= A.

Example 126:

There’s a well-known visualization of matrix transposition that is worth
knowing because, once you learn it, you are unlikely to forget how to
transpose a matrix.

Imagine a right human hand, held up so that you see the back of
it with its fingers pointing to the left. If you’re lacking in imagination,
consult this photograph:

More imagination: Think of the little finger as the first row of the
matrix to be transposed. The (in this case ringless) ring finger represents
the second row, etc.

1 5 9 13
2 6 10 14
3 7 11 15

=⇒

Now imagine the hand flipped over, with the palm facing you and the
fingers pointing up, as in this picture:4

Now the little finger represents the first column of the matrix, with
the ring finger the second column. That is, the flipped hand represents

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

188 CHAPTER 7. MATRICES

the transposition of the matrix represented by the first view of the hand.

The next definition of this subsection makes use of all three of the preceding
definitions.

Definition 40: Matrix Symmetrymatrix symmetry

Matrix A is symmetric iff A = AT.

Definition 40 clearly uses matrix equality and matrix transposition, but it
doesn’t say anything about A needing to be a square matrix. We can infer
this detail from the definition. We know that equal matrices need to have
matching quantities of rows and columns, and that transposition swaps rows
and columns. Thus, for A and AT to be equal, A’s quantities of rows and
columns must be the same. In other words, any symmetric matrix must be a
square matrix.

Example 127:

Consider this matrix:

R =

−2 4 1 9
4 13 −6 21
1 −6 0 4
9 21 4 10

Because R’s first row and first column contain the same values, as do
R’s second row and second column, etc., RT must equal R. By Defini-
tion 40, R is symmetric (and square!).

4Speaking of imagination: How did the owner of this hand not make a fortune as a
hand model? Maybe this book will be the hand’s big break. A hot-shot movie producer
will be reading the book, trying to decide whether or not to option it as a major summer
block-buster motion picture. (“Who should I cast as matrix S?”) Suddenly, she sees this
hand. “Forget the movie! I need this hand for a proctology commercial! The silly number
tattoos don’t matter; after all, we only need the index finger.”

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 189

Example 128:

In the matrix of capital letters Q, below, some letters are missing. In
order for the completed matrix Q′ to be symmetric, which letters must
be placed in the labeled locations?

Q =

w y [1] y m
y a b p [2]
f b x o z

[3] p o [4] a
m c z a s

Before rushing to examine the missing values, check the size of Q.
If Q is not square, it can never equal its transpose, meaning that the
missing values are irrelevant. Happily, Q is square — 5 × 5.

Location [1] is the third value of the first row. For Q to be symmetric,
[1] must match the third value of the first column, which is f . We need
to put an f in place of [1].

Do you prefer starting with columns? No problem! Location [2] is
the second value of the fifth column. The second value of the fifth row is
c, so we replace [2] with c to make the fifth column symmetric with the
fifth row.

Let’s use our indexing syntax to do [3]. [3] is located at q41. To be
symmetric, [3] must match q14, which holds a y.

Finally, we have to replace [4]. It is located at q44, which means that
we have to replace [4] with . . . itself! Because there’s no letter at q44, we
can make Q′ symmetric using any letter we wish to use; why not d?

Here’s the resulting matrix Q′:

Q′ =

w y f y m
y a b p c
f b x o z
y p o d a

m c z a s

Q′ = (Q′)T; it is symmetric.

Before the final symmetry example, one more matrix definition.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

190 CHAPTER 7. MATRICES

Definition 41: Main Diagonalmain diagonal

The main diagonal of an n×n matrix A consists of the elements a11, a22,
. . . , ann.

That is, the main diagonal runs from the upper–left corner to the lower–
right corner of the matrix. Onto the example!

Example 129:

Did you enjoy the transposition–as–hand–flips idea? If so, you’ll probably
like this matrix symmetry visualization idea, too.

Imagine that you have a small rectangular mirror and a square matrix.
Stand the mirror on one edge along the main diagonal so that you can see
the values below the main diagonal reflected in the mirror. If the values
in the matrix in the locations above the main diagonal match those in
the reflection, the matrix is symmetric.

For instance, here’s a 3×3 matrix that just happens to be a symmetric
matrix, and the same matrix with a mirror positioned upon it as described
above:

Yes, you have to realize that the infinity symbol is a reflected ‘8’, that
the accented ‘w’ is ‘-3’, and the reflected ‘7’ is . . . well, whatever that
symbol is, but apart from that, the reflected values match the existing
values below the main diagonal.

Are you wondering about the values on the main diagonal? Don’t
worry about them! As we saw in Example 128, the main diagonal’s values
stay right where they are when the transposition is created. Because
they only have to match themselves, main diagonal values cannot break
symmetry.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 191

7.3 Numeric Matrix Operations

Matrix transposition, covered in Section 7.2.2, is a matrix operation, but one
that can be applied to any matrix, no matter the content. When the content
of a matrix consists of real numbers, we can do a few more operations, the
last of which is more than a bit of work to evaluate.

7.3.1 Matrix Addition and Subtraction

Matrix addition is a simple and commonly-used operation. If you have ever
written a computer program that filled two arrays with data and added the
content together, element by element, to fill a third array, you’ve performed
matrix addition.

Definition 42: Matrix Addition matrix addition

The sum of two numeric n × m matrices A and B is the n × m matrix C
such that cij = aij + bij. (Also known as Matrix Sum.)

The definition of matrix subtraction is only slightly different.

Definition 43: Matrix Subtraction matrix subtraction

The difference of two numeric n × m matrices A and B is the n × m
matrix C such that cij = aij − bij. (Also known as Matrix Difference.)

Example 130:

Let:

O =

0 9
−4 2

4 5
−2 1

P =

4 −8
1 8

−4 2
0 1

O and P are both 4 × 2 in size, and contain integers. Thus, we can

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

192 CHAPTER 7. MATRICES

add their corresponding pairs of values to compute the matrix addition
O + P :

O + P =

0 + 4 9 + (−8)
−4 + 1 2 + 8

4 + (−4) 5 + 2
−2 + 0 1 + 1

=

4 1
−3 10

7 0
−2 2

Perhaps not surprisingly, the sum P + O is the same:

P + O =

4 + 0 −8 + 9
1 + (−4) 8 + 2

−4 + 4 2 + 5
0 + (−2) 1 + 1

=

4 1
−3 10

7 0
−2 2

Example 130 suggests (but does not prove!) that matrix addition is com-
mutative, which it is. Matrix addition is commutative because each element of
the resulting matrix is formed from the addition of the corresponding elements
of the operand matrices, and addition of real values is commutative.

Example 131:

Matrix addition is commutative, but what about matrix difference? The
answer to that question depends on the answer to this question: Is basic
subtraction commutative? That is, does a − b = b − a for all values of a
and b?

Remember, to disprove a conjecture, we only need one counter-example.
Let’s try a = o42 = 1 and b = p42 = 1 from the matrices O and P in
Example 130. a − b = 1 − 1 = 0 and b − a = 1 − 1 = 0. In this case
a − b = b − a, which means that this is not a counter-example. But, this
case is the specific situation in which a = b. We need a little more variety.

Let’s try an a 6= b example by using a = o11 = 0 and b = p11 = 4.
a − b = 0 − 4 = −4, but b − a = 4 − 0 = 4. Because a − b 6= b − a,
we have our counter-example. It follows that matrix difference is not
commutative.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 193

7.3.2 Scalar Multiplication

Having just covered matrix difference, we can reveal a minor secret: We did
not need to cover it. Just as we can accomplish the subtraction of two real
numbers by multiplying the second by −1 and adding (a − b = a + (−1 · b)),
we can perform matrix difference by performing a scalar multiplication on the
second matrix and adding.

Before we can define scalar multiplication, we need to explain what a
‘scalar’ is.

Definition 44: Scalar scalar

A scalar is a real number.

Yes, very exciting. Also somewhat superficial, but good enough for our
needs.5

Definition 45: Scalar Multiplication scalar multiplication

The multiplication of a scalar d and an n × m numeric matrix A, written
dA, is the n × m matrix B such that bij = d · aij.

In plain English: To perform a scalar multiplication, we multiply every
element of the given matrix by the given scalar.

An alternate term for ‘scalar multiplication’ is ‘scalar product,’ but that
term is more commonly used as an alternate name for ‘dot product,’ which is
why we are not going to use the phrase ‘scalar product’ in this book.

Example 132:

Consider matrix O from Example 131, and the scalar 3:

5 The term scalar has several meanings in math and science. For example, a scalar is,
to mathematicians more generally, an element of any field, where a field is a set of values for
which the operations of addition, subtraction, multiplication, and division are defined. For
example, the set Z can be called the field of integer values. Another example: In computer
programming, ‘scalar’ is an older term for a variable.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

194 CHAPTER 7. MATRICES

3 O = 3 · O = 3 ·

0 9
−4 2

4 5
−2 1

=

0 27
−12 6

12 15
−6 3

Example 133:

In Section 7.3.1, we explained, but did not demonstrate, matrix differ-
ence. Here’s how to do matrix difference with scalar multiplication, using
matrices O and P from Example 131:

O − P = O + (−1 P)

=

0 9
−4 2

4 5
−2 1

+

−1 ·

4 −8
1 8

−4 2
0 1

=

0 9
−4 2

4 5
−2 1

+

−4 8
−1 −8

4 −2
0 −1

=

−4 17
−5 −6

8 3
−2 0

7.3.3 Matrix Multiplication (a.k.a. Matrix Product)

Matrix multiplication, the first time you see it, may appear to be someone’s
idea of a joke. It can be difficult to see, from the definition, how there can
be a practical application of such a complex collection of seemingly arbitrary
operations. So, let’s start with a practical application.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 195

Example 134:

Sports leagues often need to rank their teams for playoff seedings, or just
bragging rights. The obvious starting point is each team’s total number
of victories, but how can we ‘break’ ties?

Consider the Letters League, with teams Alpha, Beta, Gamma, and
Delta. Each team has played two games, with the following results. In
the first pair of games, Alpha defeated Gamma and Beta defeated Delta.
In the second pair, Alpha defeated Delta and Gamma defeated Beta. We
can represent these results in a domination matrix, D. drc is ‘1’ if team r
defeated team c, and is ‘0’ otherwise. D is a square matrix (4 × 4 in this
case), with the rows and columns labeled identically:

D =

Alpha Beta Gamma Delta

Alpha 0 0 1 1
Beta 0 0 0 1

Gamma 0 1 0 0
Delta 0 0 0 0

→

Wins

2
1
1
0

Adding up the rows gives us the number of victories: Alpha has won two
games, and Beta and Gamma one game each. (Adding the columns gives
the number of losses.) Beta and Gamma are tied with one victory each.
But are they equally talented? What additional information can we use
to distinguish them?

Besides telling us direct wins and losses, the domination matrix can
also tell us transitive results. That is, we know that Alpha defeated
Gamma, and then Gamma defeated Beta. By transitivity, we could rea-
son that Alpha is a better team than Beta, even through Alpha and Beta
have not played directly against one another.

We can also represent these transitive results (which are called two–

step results, with the direct results called one–step) using a similar matrix

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

196 CHAPTER 7. MATRICES

which, for reasons of foreshadowing, we will name D2:

D2 =

Alpha Beta Gamma Delta

Alpha 0 1 0 0
Beta 0 0 0 0

Gamma 0 0 0 1
Delta 0 0 0 0

→

Two-Step
Results

1
0
1
0

The ‘1’ in the top row is the example we just used: Alpha is two–step
dominant over Beta because Alpha defeated Gamma and Gamma de-
feated Beta. The other ‘1’ in D2 comes from Gamma defeating Beta and
Beta defeating Delta.

Adding the values across the rows of D2 gives the numbers of two–step
results. Adding the one–step totals to the two–step totals distinguishes
Beta and Gamma: Gamma’s total is two, while Beta’s is still one:

One-Step + Two-Step =

One-Step
Results

2
1
1
0

+

Two-Step
Results

1
0
1
0

=

Totals

Alpha 3
Beta 1

Gamma 2
Delta 0

You may well be asking: “OK, great, but what does this have to do
with multiplying matrices?” Filling D2 with two–step results wasn’t too
hard to do by inspection, because we have just four teams and four games
played. Any thoughts as to an operation that we might be able to use to
automate that process to handle more teams and more games? We will
graciously give you one guess.

(We will tell you if your guess is correct, we promise. We will revisit
this example later in this chapter, in Example 148.)

Matrix addition and scalar multiplication were straight-forward; matrix
multiplication is not.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 197

Figure 7.4: Foreshadowing — also your guide to quality textbook writing?
Credit: Berkeley Breathed, “Bloom County”, December 11, 1985.

Definition 46: Matrix Multiplication matrix multiplication

The product of an m × n matrix A and an n × o matrix B is an m × o

matrix C = A · B = AB in which cij =
n
∑

k=1
(aik · bkj). (Also known as

Matrix Product.)

For a definition that is not even two lines long, we have a lot to explain.

First, take a close look at the sizes of the operand matrices A and B. They
have a letter (n) in common, and that is not an accident. We can perform the
product of matrices D and E, in that order (that is, with D on the left of E),
only when D’s quantity of columns equals E’s quantity of rows.

Second, look at the size of the resulting matrix, C. Its quantity of rows
(m) matches the quantity of rows of A and its quantity of columns (o) matches
the quantity of columns of B. Again, this is not an accident.

Putting these two size observations together gives us the two preliminary
steps of performing a matrix multiplication:

1. Verify that the quantity of columns of the first/left matrix equals the
quantity of rows of the second/right matrix. If they do not match, a
matrix multiplication cannot be performed on the matrices in this order.

2. The size of the resulting matrix will have the same quantity of rows as
does the first/left matrix, and the same quantity of columns as does the
second/right matrix.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

198 CHAPTER 7. MATRICES

2× 4 4× 1

D’s size E’s size

(a)

2× 4 4× 1=

D’s columns = E’s rows

(b)

2× 4 4× 1=

(D · E)’s Size = 2× 1

(c)

Figure 7.5: Checking Matrix Sizes before Matrix Multiplication

When written out, the steps are pretty dry. We can show these steps
visually instead, as Example 135 and Figure 7.5 demonstrate.

Example 135:

Let D and E be the following matrices:

D =

[

3 5 −1 0
0 2 3 −2

]

E =

1
0

−4
2

D’s size is 2 × 4, and E’s is 4 × 1. By the definition of matrix mul-
tiplication, in order to perform D · E, the number of columns of D (4)
must equal the number of rows of E (4). The remaining two values, the
rows of D (2) and the columns of E (1) give us the size of their product:
2 × 1.

Figure 7.5 shows a visualization that can help you remember the
needed relationships. Begin, as shown in part (a), by writing down the
sizes of the matrices D and E, side by side, with the size of the first/left
matrix on the left. This places the number of columns of the left ma-
trix next to the number of rows of the right matrix, making it easy to
remember that this is the pair of values that must be equal (part (b)).
The remaining pair of values provide the size of the resulting matrix, as
shown in part (c).

Determining the that matrix product can be computed, and how large the
resulting matrix will be, is most of the text of the Definition 46. Unfortunately,
the hard part remains: Computing the product. The notation is short and

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 199

sweet in the definition (“cij =
n
∑

k=1
(aik · bkj)”), but what does that expression

require us to do?
Start with cij. The subscripts tell us the location within the result matrix

whose value we are trying to compute: row i, column j. The summation

(

n
∑

k=1

)

has the other two variables, n and k. We already know what n represents:
The quantity of columns of the first/left matrix, A, as well as the quantity of
rows of the second/right matrix, B. k starts at 1 and is incremented through
n. For each value of k, we find the values at locations aik and bkj and multiply
them. Adding up those n products produces the value to be placed at cij. Yes,
computing a matrix product can require a fair amount of arithmetic, but not
difficult arithmetic, merely tedious and error-prone arithmetic.6

Example 136:

Let’s finish what we started in Example 135. Here are D and E again,
with place-holders for the values of the resulting D · E matrix, which we
will call F :

D =

[

3 5 −1 0
0 2 3 −2

]

E =

1
0

−4
2

D · E = F =

Let’s start with f11. With i = j = 1, and D’s quantity of columns

being 4, the summation becomes f11 =
4

∑

k=1
(d1k · ek1). Expanding the

6We cannot understand how ‘tedious’ and ‘error-prone’ are not wildly popular names
for children. They aren’t even gender–specific! Yeah, it might be hard to know which name
to give to your first child, but you can always swap names later.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

200 CHAPTER 7. MATRICES

summation makes our task plain:

f11 =
4

∑

k=1

(d1k · ek1)

= (d11 · e11) + (d12 · e21) + (d13 · e31) + (d14 · e41)

= (3 · 1) + (5 · 0) + (−1 · −4) + (0 · 2)

= 3 + 0 + 4 + 0

= 7

Notice that what we are doing is ‘walking’, left to right, across the
first row of D while simultaneously ‘sliding’, top to bottom, down the
first column of E. This is always what you will need to do to compute
the value at row i and column j of the result matrix: Walk across the
i-th row of the first/left matrix, and slide down the j-th column of the
second/right matrix.

All that remains is for us to repeat this for the other location, f21:

f21 =
4

∑

k=1

(d2k · ek1)

= (d21 · e11) + (d22 · e21) + (d23 · e31) + (d24 · e41)

= (0 · 1) + (2 · 0) + (3 · −4) + (−2 · 2)

= 0 + 0 + (−12) + (−4)

= −16

And so:

[

3 5 −1 0
0 2 3 −2

]

·

1
0

−4
2

=

[

7
−16

]

Before we leave D and E, a final question: Can we compute the matrix
product E · D? E is 4 × 1 in size, but D has 2 rows. 1 6= 2, and so E · D
cannot be computed. It follows that, in general, matrix multiplication is not
commutative.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 201

Example 137:

Are you worried that you will have trouble remembering to walk across
the rows of the first matrix and slide down the columns of the second,
rather than the reverse? Perhaps you’re still a bit worried about check-
ing the matrix sizes correctly? Positioning the operand matrices in an
unusual way can help with both concerns.

Consider the matrices G and H and the eventual matrix product J ,
positioned as we’ve been positioning matrices:7

G =

3 2
0 −2
1 0

H =

[

1 3
3 4

]

G · H = J =

By moving H up, and shifting J to be next to G and beneath H, we
produce:

H =

[

1 3
3 4

]

G =

3 2
0 −2
1 0

= J = G · H

This arrangement shows that J fits perfectly next to G and beneath
H because it has the same quantity of rows as does G, and the same
quantity of columns as does H — exactly our sizing relationships. Also
notice that the rows of G and the columns of H, if you imagine extending
them, intersect at the boxes within J . If you select a particular box from
J , the row of G and the column of H that intersect at that box are the
row/column that we will walk–across/slide–down to produce the value
that belongs in that box. Be aware that we have to check separately that
the quantity of columns of G equals the number of rows of H.

What’s the content of J? We encourage you to work that out yourself!

7“Wait; G, H, . . . J? What have you got against I?” Calm down; we like I just fine. A
special family of matrices has the name I, so using it here to name a different matrix could
be confusing. Consumed by curiosity about I? Jump ahead to Section 7.4.3.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

202 CHAPTER 7. MATRICES

7.4 Matrix Powers and the Identity Matrix

7.4.1 Matrix Powers

Consider multiplying a square matrix by another square matrix. The only way
that this can be done is if both operand matrices are the same size (because
the quantity of rows of the first/left square matrix must equal the quantity of
columns of the second/right square matrix). The resulting matrix will be of
the same size as the operand matrices.

Let’s take this a bit further. If we want to multiply a matrix by itself, the
matrix must be square, and the resulting matrix will be a square matrix of the
same size. We can multiply the result by the original again, and repeat this
as many times as we wish. It’s similar to multiplying a real number by itself
multiple times to raise the number to an integer power. For example, 2 · 2 =
22 = 4, (2 · 2) · 2 = 22 · 2 = 23 = 8, etc. Doing repeated matrix multiplication
with square numeric matrices forms matrix powers of the matrix.

Definition 47: Matrix Powermatrix power

The nth matrix power of an m × m numeric matrix A, denoted An, is the
result of n − 1 successive matrix products of A.

Example 138:

What is K2, if K =

[

0 1
1 2

]

?

Because we already know how to perform matrix multiplication, com-
puting K2 is straight-forward.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 203

K2 = K · K

=

[

0 1
1 2

]

·

[

0 1
1 2

]

=

[

1 2
2 5

]

Example 139:

K2 wasn’t hard, because it didn’t matter which copy of K was on the left
— K = K! But to create K3, do we compute (K · K) · K or K · (K · K)?

The answer is: It doesn’t matter! From Example 138, we know what
K2 contains. Let’s compute both K2 · K and K · K2:

K2 · K =

[

1 2
2 5

]

·

[

0 1
1 2

]

=

[

2 5
5 12

]

K · K2 =

[

0 1
1 2

]

·

[

1 2
2 5

]

=

[

2 5
5 12

]

That might seem to be a little . . . suspicious. Sure, this worked out, but
K is symmetric; maybe that’s a special case. We could try it again with a
non-symmetric matrix, but perhaps that would be a matrix that we cooked
up to make both orderings work. To convince people that the ordering of the
matrix products really does not matter, what we need is more generality, such
as we would use in a proof.

Example 140:

Problem: Prove that A3, the third matrix power of an 2 × 2 numeric
matrix A, is equal to both A2 · A and A · A2.

Solution: Let’s get something out of the way immediately: We demon-
strated, in Section 7.3.3, that matrix multiplication is not generally com-

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

204 CHAPTER 7. MATRICES

mutative. However, our current problem is not a general situation; rather,
it is specific to matrix powers, in which there is only one given matrix.
Further, Example 139 gives us some reason to believe that matrix multi-
plication might actually be commutative for matrix powers. Given that,
attempting a proof is worth the trouble.

We know that the resulting matrix A3 will be a 2 × 2 matrix. What
we need to show is that the four values that comprise A3 are the same
for both A2 · A and A · A2. Because the matrices we need to compute are
all 2 × 2, and because the power is just 3, we can simply multiply all four
values for each of the two products and verify that they are the same ex-
pressions. Hard? Not really. Tedious and error-prone? Definitely. Good
thing we’re going to do the dirty work for you!

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 205

Conjecture: If A is a 2 × 2 numeric matrix, then
A3 = A2 · A = A · A2.

Proof (Direct): We are given that A is a 2 × 2 numeric
matrix.

Let A =

[

a b
c d

]

, where a, b, c, d ∈ R.

A2 =

[

a b
c d

]

·

[

a b
c d

]

=

[

a2 + bc ab + bd
ac + cd bc + d2

]

A2 · A =

[

a2 + bc ab + bd
ac + cd bc + d2

]

·

[

a b
c d

]

=

[

(a3 + abc) + (abc + bcd) (a2b + b2c) + (abd + bd2)
(a2c + acd) + (bc2 + cd2) (abc + bcd) + (bcd + d3)

]

A · A2 =

[

a b
c d

]

·

[

a2 + bc ab + bd
ac + cd bc + d2

]

=

[

(a3 + abc) + (abc + bcd) (a2b + abd) + (b2c + bd2)
(a2c + bc2) + (acd + cd2) (abc + bcd) + (bcd + d3)

]

The expressions in all four locations of both results are equivalent
(due to commutativity of addition of real numbers).

Therefore, A3 = A2 · A = A · A2.

A note about the added parentheses: We added them to the result ma-
trices to organize the expressions a bit; they aren’t mathematically nec-
essary.

In the proof, we explained what we were doing in terms of commutativity.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

206 CHAPTER 7. MATRICES

We can also look at it in terms of associativity: A3 = AAA = (AA)A =
A(AA). Associativity of matrix multiplication holds for any three numeric
matrices A (of size i × j), B(j × k), and C(k × l), not just for matrix powers:
A(BC) = (AB)C. For that matter, matrix multiplication is also distributive
over matrix addition, when the sizes are appropriate: D(E + F) = DE + DF .

Are you wondering how the proof can be generalized to A4, to A5, and
eventually to Am, where m is any positive integer power? We can do that by
applying the definition of matrix multiplication more directly. We can also do
it inductively . . . but we haven’t covered inductive proofs yet. We soon will;
stay tuned!

7.4.2 The Cost of Matrix Multiplication

How much effort is required to multiply two matrices? That’s not an easy
question to answer. Complicating factors include whether or not code is being
parallelized, how memory is being managed, and which matrix multiplication
algorithm is used.8 We can ignore those complications and still learn some-
thing useful about how to multiply matrices using the definition’s approach.

When analyzing the execution cost of an algorithm, individual operations
are typically ignored in favor of an approximate category result. For exam-
ple, sequentially searching a list is a linear operation, meaning that the work
required is described as a linear function of n, the quantity of items in the
list, rather than other function of n (e.g., logarithmic or quadratic). Different
implementations of sequential search can have different linear functions that
describe the number of operations performed, such as 3n + 2 or 5n + 6. Be-
cause those are linear functions, we say that sequential search belongs to the
“linear” category of algorithm efficiencies.

In this section, we will be more detailed. We know that matrix multi-
plications require many real–number multiplications and additions. But how
many? Let’s find out.

The Cost of Multiplying Two Matrices

We defined two matrices D and E in Example 135:

8Yes, there are algorithms other than the one described by the matrix multiplication
definition, all created to require less effort. Two examples: The definition’s ‘naive’ approach
can be parallelized. Strassen’s algorithm exchanges multiplications for additions, but an
advantage is gained only for matrices with hundreds of rows/columns.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 207

D =

[

3 5 −1 0
0 2 3 −2

]

E =

1
0

−4
2

Because the size of F = D ·E is 2×1, we need to compute two intermediate
results, f11 and f21. But, as we perform the same operations to compute each
of them (albeit on different groups of values), we can figure the numbers of
multiplications and additions for any one element fij and double it to get the
total for the entire matrix product.

Consider f21. Expanding the definition’s summation expression, as we did
in Example 136, shows us the required quantities of operations:

f21 =
4

∑

k=1

(d2k · ek1) = (d21 · e11) + (d22 · e21) + (d23 · e31) + (d24 · e41)

Computing f21 requires four multiplications and three additions. Thus,
computing the content of F requires eight multiplications and six additions.
Hardly a lot of either, but of course the numbers will grow as as sizes of
the matrices grow. We need to generalize our observations so that we can
determine the work required for any pair of matrices.

To make what follows easier to understand, let’s re–introduce the variables
we used in the matrix product definition. Assume that we are computing
C = A · B. Let A be m × n and let B be n × o, which means C is m × o.

Both the quantities of multiplications and additions are determined by n,
which is both the quantity of columns of A, and the number of rows of B.
Specifically, for each element cij, we perform n multiplications of elements of
A and B, and n−1 additions to sum those products. There are m ·o values in
C to compute. Thus, there are mno multiplications and m(n − 1)o additions
performed in the computation of C.

Example 141:

Question: How many total multiplications and additions are required to
compute AB using the definition when A is 10 × 12 and B is 12 × 6?

Answer: Using our m, n, and o variables, m = 10, n = 12, and o = 6.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

208 CHAPTER 7. MATRICES

There are mno = 10 · 12 · 6 = 720 multiplications and m(n − 1)o =
10 · 11 · 6 = 660 additions, for a total of 720 + 660 = 1380 operations.

Are you wondering how costly multiplications and additions of real num-
bers are to perform? There’s no easy answer to that question, because different
CPUs (Central Processing Units) implement addition and multiplication op-
erations differently. Very roughly, floating–point multiplications are twice as
expensive as are floating–point additions and subtractions.

The Cost of Multiplying Three Matrices

At the end of Section 7.4.1, we learned that matrix multiplication is associa-
tive; that is, ABC = (AB)C = A(BC). This means that we can compute
the matrix product ABC either by computing AB and then multiplying (on
the right) by C, or by computing BC and multiplying (on the left) by A. At
first glance, you might believe that the choice doesn’t matter — both give you
the correct answer. But do they both require the same amount of effort to
produce that answer? Let’s find out.

Example 142:

We will again assume, as we did in Example 141, that A is 10 × 12 and
B is 12 × 6. Further, assume that our new third matrix, C, is 6 × 8.

From Example 141, we know what it costs to compute the 10 × 6
matrix AB. Computing the 10 × 8 matrix (AB)C requires an additional
10 · 6 · 8 = 480 multiplications and 10 · 5 · 8 = 400 additions, which is 880
operations. Add in the 1380 operations needed to compute AB, and the
grand total for (AB)C is 2260 operations.

We need to deal with A(BC) from scratch. BC requires 12 ·6 ·8 = 576
multiplications and 12 · 5 · 8 = 480 additions. A(BC) requires 10 · 12 · 8 =
960 multiplications and 10 · 11 · 8 = 880 additions. The grand total is
2896.

The difference is a (probably) surprising 636 (28%) more operations
to compute A(BC) than are needed to compute (AB)C. Keep in mind
that this result is for matrices of these three sizes. The math will work
out differently for other matrix sizes.

The take–away message: If you need to compute a sequence of matrix
multiplications just once, the associativity you choose is likely to make a

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 209

difference, but probably not enough of a difference to be a concern. However,
if you need to perform the same product repeatedly (for example, because
the contents of the matrices change), figuring out the most efficient product
sequence is likely to be worth the effort.9

Example 143:

Huge matrices are not uncommon. The SuiteSpace Matrix Collection,10

as of this writing, includes a dataset of U.S. patent citations cover-
ing just utility patents granted during the 37 years 1963 through 1999.
The matrix representing it is 3, 774, 768 × 3, 774, 768. Using the ma-
trix multiplication definition’s approach, computing its second matrix
power would require 53,786,191,549,544,312,832 multiplications and a
mere 53,786,177,300,670,859,008 additions, for a total of more than 1020

operations.

7.4.3 Multiplicative Identity and the Identity Matrix

You might remember learning about additive and multiplicative identities in
other classes. A value a is the additive identity of a set of values if adding a
to another value of the set does not change the value. That is, a + x = x. We
hope you know that a = 0 is the additive identity for the set of real numbers.
Similarly, a value m is the multiplicative identity of a set when m · x = x.
Considering the set of reals again, its multiplicative identity is m = 1.

Because addition and multiplication are defined for matrices, it makes
sense for us to think about additive and multiplicative identities for numeric
matrices. The m × n additive identity matrix only contains zeroes. Of course,
we have to choose m and n to allow the matrix addition to be performed.
Practically, additive identity matrices are not very interesting. Multiplicative
identity matrices, on the other hand, are rather useful.

A multiplicative identity matrix (always called I) must be sized so that
the matrix multiplication with another matrix A, A · I, is possible, and must
have content such that the result equals A.

9Fun fact: The number of ways to associate an n matrix multiplication sequence is the
(n − 1)st Catalan number. For example, there are C3 = 5 ways to associate a multipli-
cation sequence of n = 4 matrices: W (X(Y Z)), W ((XY)Z), (W (XY))Z, ((W X)Y)Z, and
(W X)(Y Z).

10Look for “SNAP/cit–Patents” at https://sparse.tamu.edu/

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

210 CHAPTER 7. MATRICES

Let’s consider size first. If A is m × n in size, to compute A · I, I must
have n rows. For the result to equal A, I must also have n columns. Thus, I
is a square matrix of size n × n. Notationally, we represent this matrix as In.

But what about I · A? We want that to equal A, too. No problem; if we
want I on the left of A, we need to use Im to make the matrix multiplication
work. That is: When the size of A is m × n, multiplying on the left of A with
Im, or multiplying on the right with In, will make the sizes work out correctly.

Now for the content: What must Im and In contain so that the products
Im · A and A · In both produce the original matrix A’s content? We can figure
this out for ourselves by thinking about how a matrix product is produced.
Let A be 2 × 2, and consider A · I2 = A. Let’s expand the matrices and stack
them to make the products easier to see:

I2 =

[

i11 i12

i21 i22

]

A =

[

a11 a12

a21 a22

] [

a
′

11 a
′

12

a
′

21 a
′

22

]

= A · I2 = A

Consider just the upper–left value of the product (a
′

11). From the definition
of matrix multiplication, we know that a

′

11 = (a11 · i11) + (a12 · i21). To end up
with a

′

11 = a11, We need to eliminate all of the other values on the right–hand
side. Using multiplicative identity, i11 must be 1. To eliminate a12, we need
to multiply by zero, so i21 = 0 .11

To complete the first row, a
′

12 must equal (a11 · i12) + (a12 · i22). By similar

reasoning, i12 = 0 and i22 = 1, giving us I2 =

[

1 0
0 1

]

. We need to retain the

values of the second row of A in exactly the same way. Happily, this content
for I2 will do that job, too. You can check for yourself that this content also
works for I2 ·A, as well as for other sizes of A that have more rows of A (when
computing A · I2) or more columns of A (for I2 · A).

11 The property a · 0 = 0 · a = 0 has at least two names, both of them quite dull: The
Multiplication Property of Zero, and the Zero Property of Multiplication. We propose that it
be renamed “Multiplicative Oblivion”, which is significantly more exciting. “Multiplicative
Domination” would work, too, but asking logical equivalences to share “Domination” with
multiplication doesn’t feel right.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 211

Figure 7.6: If only Merlin had thought to consign Morgana to Mathe-
matical Oblivion instead. Credits: John Boorman’s “Excalibur”; https:

//memegenerator.net.

We can make I any size we need. In general:

In =

1 2 . . . n

1 1 0 . . . 0
2 0 1 . . . 0
...

...
...

. . .
...

n 0 0 . . . 1

Having provided so much explanation, the actual definition is old news:

Definition 48: Identity Matrices identity matrices

Identity Matrices (denoted In) are n×n matrices populated with 1 along
the main diagonal and 0 elsewhere.

Time to talk about the utility of the identity matrix, starting with matrix
powers. We now know that A3 = A · A · A, and A2 = A · A. It follows that
A1 = A. But what, if anything, does A0 represent? Right: I!

Here are two reasons that this makes sense. First, when r is a real number,
we know that r1 = r and r0 = 1. A1 = A and A0 = I parallels these basic

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

212 CHAPTER 7. MATRICES

powers of real numbers. Second, think about writing a few lines of code to
compute a running product. Traditionally, we would declare a variable to hold
the product, and would use a loop to multiply values into this variable. But
what should be the initial value of this variable? It can’t be zero, because
of “Mathematical Oblivion”,12 but one works nicely. The first time through
the loop, we multiply the variable’s value of one by the first value that forms
the running product, and the result is that value. With that starting point,
multiplying in the rest of the values will work as desired.13 Similarly, when
needing to compute a running product of matrices, we can initialize our run-
ning product matrix to hold I and multiply the first matrix from the collection
into it.

Why would we need to have a running product of a collection of matrices?
Computing a matrix power (see Section 7.4.1) is one reason. A second appears
when performing object transformations in computer graphics, as explained
in Section 7.5.

7.5 Matrix Operations in Orthographic
Projections

7.5.1 Our Problem: Design a Shed . . . or Maybe a Dog House

Imagine that you want to build, in the back left corner of your yard, a storage
shed that is 12 feet wide and 12 feet deep, with walls 9 feet high and a gable
roof that rises to 12 feet at the ridgeline. To help yourself visualize the shed,
you sketch out a diagram, with the origin at the corner of your yard, as shown
in Figure 7.7 (a).

This diagram is a two-dimensional representation of a three-dimensional
object. In drafting, this kind of representation is known as an orthographic

projection.14

Having drawn your shed to show three sides, next you decide to draw only
the front view of the shed; that is, how the front of the shed would look if
you stood in the middle of the road, directly in front of the shed, and looked

12 You read the previous footnote, didn’t you?
13 Yes, we could initialize the product variable to the first value of our collection and

start the ‘product–ing’ with the second value, but that wouldn’t help us make our point, and
nothing is more important than whatever point we are currently trying to make . . . whether
or not we can remember what it was ten seconds from now.

14Specifically, an axonometric orthographic projection. We’re pretty sure. It sounds
impressive, anyway. We are confident that it is not a perspective projection, because there
are no vanishing points.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.5. MATRIX OPERATIONS IN ORTHOGRAPHIC PROJECTIONS 213

x

y

z

12

12

9

12

(a)

x

y

0
0

12

12

9

(b)

x

y

0
0

2

2

(c)

x

y

0
0

49 51

2

(d)

Figure 7.7: Turning a Shed into a Dog House in Three Easy Steps.

toward your back yard. You would see only the front of the shed, not the
sides, the roof, or the back. This is shown in Figure 7.7 (b). You can think
of this as ‘flattening’ the shed against an imaginary wall along your back lot
line, much as you might flatten an aluminum can by standing it upright on
the ground and stomping on it with your foot. This is also an example of an
orthographic projection, but is more straight–forward because the projection
plane — the imaginary wall against which we are flattening the shed — is the
same as one of the three coordinate planes (in this case, the xy plane).15

Time for a plot twist: You start pricing materials and realize that your
vision greatly exceeds your budget. What will you do? Quit and look like an
incompetent fool to your friends and neighbors? No chance! You regroup and
get to work on the design of a dog house for your faithful companion. A shed
design quickly becomes a dog house design with just a little scaling (a.k.a.
resizing) of the dimensions. After measuring your puzzled dog, you decide to
make the dog house one-sixth the width of the shed, and one-fourth as tall
and as deep. Figure 7.7 (c) shows the scaled front view.

Your intellectual reputation has been saved! But is the back left corner
of the yard the right place for the dog house? If you win the lottery16 and
revive your shed dreams, you’ll still want it in the back corner. With that in
mind, you decide to place the dog house in the middle of the back of the yard.
Your lot is 100 feet wide, so the middle of the house will be 50 feet from the

15 We are intentionally not giving precise definitions of these projections, because we want
to get back to matrices and matrix operations before the sun flames out. Please forgive us,
American Design Drafting Association!

16Reality check: You are highly unlikely to win the lottery’s grand prize. How extremely
highly unlikely? We will cover that in a later chapter. In the meantime, just take our word
for it: Ridiculously extremely highly unlikely.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

214 CHAPTER 7. MATRICES

back corners. This translation of the dog house from one location to another
is depicted in Figure 7.7 (d).

7.5.2 Combining The Operations

These three steps (‘flattening’ the shed, scaling it, and translating it) can be
done in separate steps, but they can be combined into one step. Let (x, y, z)
be a point on our original shed diagram (Figure 7.7 (a)). To create Figure 7.7
(b), the orthographic projection (‘flattening’) simply moves all of the points
to the xy–plane, which can be done by simply setting the z components of the
points to zero. Scaling, to create Figure 7.7 (c), is done by multiplying the x
and y components by their scaling factors sx and sy. In this case, sx = 1/6
and sy = 1/4. The final step, the translation to create Figure 7.7 (d), is
accomplished with addition (or subtraction) of translation amounts tx and ty.
Here, we want to slide along the x–axis to the right by 49 feet but leave all
of the y components unchanged. Thus, our translation amounts are tx = 49
and ty = 0. Combined, we produce formulae we can use to transform every
(x, y, z) point that we used to describe the shed into points (x′, y′, z′) that
describe the dog house’s front view:

x′ = sx · x + tx = (1/6)x + 49

y′ = sy · y + ty = (1/4)y

z′ = 0

For example, consider the upper front right corner of the shed diagram. It
is described by the point (12, 9, 12). Applying the expressions above, we find
that the corresponding corner of the dog house is located at (51, 2 1/4, 0).

That was pretty easy . . . and not a matrix in sight! Unfortunately, this
matrix–free approach has limitations as the applications become more com-
plex. First, that was the transformation of one point; we have to translate all
of the points that describe the object. Second, the shed / dog house is just one
object; what if we have to work with several different objects, as in an archi-
tectural drawing of an office building? Third, perhaps we need to transform
several objects many times per second to achieve smooth simulation motion,
as in a real–time video game.

When speed is critical, we can try to reduce the number of operations
that need to be performed. One way to do that is to combine transformation
operations into one or more matrices. Modern computers go a step further and
off–load those matrix operations to one or more graphics processing units —
GPUs — often found on graphics cards added to general–purpose computers.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.5. MATRIX OPERATIONS IN ORTHOGRAPHIC PROJECTIONS 215

To turn our projection–scaling–translation operation sequence into matrix
operations, we need to start by representing a point as a matrix. We could
use a row vector or a column vector. Traditionally, a column vector is used,
so we’ll follow that convention. Thus:

(x, y, z) =⇒

x
y
z

Time to consider the operations. We will start with the orthographic
projection. In our example, the projection retained the x and y components
of each point and replaced the z components with zeroes. We can perform
this with matrix multiplication and a 3 × 3 matrix that is almost an identity
matrix:

1 0 0
0 1 0
0 0 0

·

x
y
z

=

x
y
0

A lot of work, isn’t it, just to copy x and y and replace z with zero? This
can’t be worth the trouble! It wouldn’t be worth the trouble if this were all
that we needed to do . . . but it isn’t.

Scaling requires multiplying x and y by sx and sy, respectively. We can
do that with the same almost–identity matrix, by replacing the ones with sx

and sy:

sx 0 0
0 sy 0
0 0 0

·

x
y
z

=

1
6 0 0
0 1

4 0
0 0 0

·

x
y
z

=

1
6x
1
4y
0

Notice that we are performing both the ‘flattening’ and the scaling with
this one matrix — two transformations in one! This works because the product
of the two matrices is just this scaling matrix:

1
6 0 0
0 1

4 0
0 0 0

·

1 0 0
0 1 0
0 0 0

=

1
6 0 0
0 1

4 0
0 0 0

The final operation, the translation, cannot be done by modifying this
combined transformation matrix. But, we can do with matrix addition:

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

216 CHAPTER 7. MATRICES

sx 0 0
0 sy 0
0 0 0

·

x
y
z

+

tx

ty

0

=

x′

y′

z′

=

1
6 0 0
0 1

4 0
0 0 0

·

x
y
z

+

49
0
0

Working out these matrix operations will produce the expressions for x′, y′,
and z′ from earlier: x′ = sx · x + tx = (1/6)x + 49, y′ = sy · y + ty = (1/4)y,
and z′ = 0.

Needing to perform the translation with a matrix addition is unsatisfying,
after having been able to combine the ‘flattening’ with the scaling into a sin-
gle matrix. It is possible to combine all three operations into a single matrix
multiplication, but not with 3 × 3 matrices — 4 × 4 matrices, combined with
homogeneous coordinates, are necessary. If you’d like to know how homoge-
neous coordinates work, consult an introductory computer graphics textbook.
With the matrix background you now possess, homogeneous coordinates, not
to mention other types of transformations, will be easier to understand.

7.6 Logical Matrices

Some of the matrices that we have used in this chapter, identity matrices
in particular, contain only two values: Zero and one. Does having just two
values to work with make you think about false, true, and logical operations?
Whether it did or not, that’s where this section will take us.

Logical matrices, a.k.a. “(0, 1)–matrices”, are so named because their con-
tent is drawn from the domain consisting of just the two symbols ‘0’ and ‘1’.
We do not interpret the symbols as integers; instead, we treat ‘0’ as ‘false’ and
‘1’ as ‘true’. Such matrices have many applications. We will present one here,
along with three operations that are reminiscent of matrix operations that we
introduced earlier in this chapter. Related applications will appear in a later
chapter.

7.6.1 Using Logical Matrices to Represent Subsets of
Cartesian Products

Quick review: A Cartesian Product of two sets A and B is the set of all
possible ordered pairs (a, b) of the elements of A and B.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 217

Example 144:

Let A = B = {a, b}. Then A × B = {(a, a), (a, b), (b, a), (b, b)}.

We know that Cartesian Products are sets, which is why we have been
representing Cartesian Products with set notation. Logical matrices are an-
other possible representation. Location Mab in the matrix is set to 1 when the
ordered pair (a, b) is an element of A × B.

Example 145:

Continuing from Example 144, because A×B contains all possible ordered
pairs, every location of M contains a 1:

M =

a b
[]

a 1 1
b 1 1

Each ‘1’ tells us that a particular ordered pair exists in the set. For
example, the lower–left ‘1’ means that the ordered pair (b, a) is in the set.

Now consider two subsets of A × B. Let S = {(a, b), (b, b)} and T =
{(a, b), (b, a)}. Represented as logical matrices with the same labels:

S =

[

0 1
0 1

]

T =

[

0 1
1 0

]

7.6.2 ‘Meet’ and ‘Join’

In Section 7.3.1 we introduced matrix addition and matrix subtraction, which
applied addition and subtraction to corresponding pairs of matrix elements.
Similarly, with logical matrices, we can apply logical AND (‘∧’) and inclusive
OR (‘∨’) to pairs of same-sized (0, 1)–matrices. The names of these operations
are ‘meet’ and ‘join’, respectively.17

17Don’t blame us for these names! We didn’t come up with them. ‘Meet’ and ‘join’ are
also used as names for related but more complex operations on lattices, but we have yet to
learn whom to blame for the names.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

218 CHAPTER 7. MATRICES

Definition 49: ‘Meet’‘meet’

The ‘meet’ of two logical n × m matrices A and B is the n × m matrix C
such that cij = aij ∧ bij.

Definition 50: ‘Join’‘join’

The ‘join’ of two logical n × m matrices A and B is the n × m matrix C
such that cij = aij ∨ bij.

Performing ‘meet’ and ‘join’ is no more complex than is performing matrix
addition. What can be complex is remembering which operation performs
ANDing and which ORing. Here’s the memory aid we use: The words ‘or’
and ‘join’ both contain the letter ‘o’.18

Believe it or not, ‘meet’ and ‘join’ do have practical value, as the next
example demonstrates.

Example 146:

Continuing from Example 145, the ‘meet’ and ‘join’ of the logical matrices
S and T are:

S ‘meet’ T =

[

0 1
0 1

]

‘meet’

[

0 1
1 0

]

=

[

0 1
0 0

]

S ‘join’ T =

[

0 1
0 1

]

‘join’

[

0 1
1 0

]

=

[

0 1
1 1

]

The corresponding set representations of these results are {(a, b)} and
{(a, b), (b, a), (b, b)}. So what? Consider this: The intersection of the sets
S and T from Example 145 is the set {(a, b)} and their union is the set
{(a, b), (b, a), (b, b)}. That is, S ∩T on subsets of Cartesian Products, and
S ‘meet’ T on logical matrices representing the same subsets, are actually

18Yeah, we know; it’s not a great aid, but it works for us.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 219

performing the same operation. The same is true of S ∪ T and S ‘join’
T .

With a little reflection, this shouldn’t be very surprising — we already
know about the connections between logical operators and set operators from
the previous chapter. We will learn much more about subsets of Cartesian
Products when we cover relations in Chapter 8.

7.6.3 Logical Matrix Product

Do you remember matrix multiplication from Section 7.3.3? We hope so, be-
cause if you do, logical matrix products (a.k.a. boolean products) will be a lot
easier to understand! Their definitions are very similar; we merely replace
additions with inclusive ORs and multiplications with logical ANDs, and in-
troduce new symbols ⊙ (LATEX: \odot) and

∨

(LATEX: \bigvee).

Definition 51: Logical Matrix Product logical matrix product

The logical matrix product of an m×n logical matrix A and an n×o logical

matrix B is an m×o logical matrix C = A⊙B in which cij =
n
∨

k=1
(aik∧bkj).

(Also known as Boolean Product.)

The
∨

symbol tells us that we are to OR together all of the conjunctions
we produce for each application of the expression. That is, just as

∑

tells us
to add up all of the terms of the given sequence,

∨

says to OR up all of the
terms of the given sequence. For a logical matrix product, we have a sequence
of conjunctions to OR together.

Example 147:

Let L be a 3 × 3 logical matrix and M a 3 × 2 logical matrix. Before
computing the result of N = L ⊙ M , let’s start by stacking the matrices

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

220 CHAPTER 7. MATRICES

as we have done for matrix multiplication:

M =

1 0
1 0
0 1

L =

0 1 0
1 1 0
1 0 1

= L ⊙ M = N

Consider n11. If we were computing L · M , the expression would be
n11 = (0 · 1) + (1 · 1) + (0 · 0). To produce L ⊙ M instead, we replace the
additions with inclusive ORs and the multiplications with ANDs:

n11 = (l11 ∧ m11) ∨ (l12 ∧ m21) ∨ (l13 ∧ m31)

= (0 ∧ 1) ∨ (1 ∧ 1) ∨ (0 ∧ 0)

= 0 ∨ 1 ∨ 0

= 1

Because most people are less comfortable with logical operators than
they are with arithmetic operators, silly mistakes are common when com-
puting these products manually. Please compute the rest of N ’s content
on your own. If you list the resulting values row by row, pretend that
the six values are bits of a binary value, and convert it to octal, you
should get 538.19 For example, following this conversion process, L be-
comes 0101101012 = 2658.

Example 148:

Finally, it is time to complete Example 134! At the end of that example,
we strongly hinted that matrix multiplication was the way to compute
the D2 matrix from which we computed the two–step column vector, and
it is. Thanks to what we have covered between these examples, we now
know that “D2” isn’t just a name; it represents the second power of D,
the matrix product D · D.

19Forgotten how to convert from Base 2 to Base 8? See Section A.11 in Appendix A.
Yeah, we could just give you the answer, but would you work it out for yourself if we did?
That’s what we thought; see Figure 7.8.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 221

Figure 7.8: Honestly, if you enjoyed it, we’d be concerned. Credits: “Futu-
rama” episode 4ACV18 (“The Devil’s Hands Are Idle Playthings”); https:

//memedad.com.

A deeper question: How does that matrix multiplication produce the
two-step results? A follow–up question: Can we use a logical matrix
product to compute the same result?

We will answer both questions in this example. But first, for conve-
nience, here are D and D2, but with the actual (lower-case) Greek letters
instead of their English names, to save space and to help you learn to
recognize them:

D =

α β γ δ

α 0 0 1 1
β 0 0 0 1
γ 0 1 0 0
δ 0 0 0 0

D2 =

α β γ δ

α 0 1 0 0
β 0 0 0 0
γ 0 0 0 1
δ 0 0 0 0

Consider the 1 at row α and column β of D2, and recall that it
represents the transitive result that team Alpha (α) could be considered
to be ‘better’ than team Beta (β) because, looking at D, Alpha beat
Gamma and Gamma beat Beta.

In Example 134, that 1 value in D2 was discovered inspecting the
content of D. We want to learn why it can also be produced by ma-
trix multiplication. For clarity, here is the expanded expression for the
location row α column β of D2, and its evaluation:

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

222 CHAPTER 7. MATRICES

d2
αβ = (dαα · dαβ) + (dαβ · dββ) + (dαγ · dγβ) + (dαδ · dδβ)

= (0 · 0) + (0 · 0) + (1 · 1) + (1 · 0)

= 0 + 0 + 1 + 0

= 1

Notice which of the four products produced the 1: dαγ ·dγβ. Comput-
ing these four products requires us to examine all four ways of ‘connecting’
Alpha to Beta through the four teams. Looked at another way, each value
dij represents a win (1) or a loss (0) when i played j. The only way that
d2

αβ can be 1 is for both dαx and dxβ to be 1 for at least one team x. In
this case, x = γ. Because the matrix product is examining all ways that
Alpha could be transitively (a.k.a. two–steps) better than Beta, if a way
exists, the matrix product will find it. Here there was one way: Alpha
beat Gamma, and Gamma beat Beta.

The complete matrix power D2 contains the two–step results for all
possible pairings of teams. As we know, each result is due to four prod-
ucts, but some of those products will always be zero in this situation. For
example, consider the term dαα · dαβ from above. No intrasquad games
(that is, a game in which a team plays itself) will count in the standings,
meaning that dαα will always be zero. In the full four-product expres-
sion, only the last two terms could possibly be non–zero, because there
are only two teams to consider other than Alpha and Beta.

This has an important implication: Depending on the game outcomes,
with four teams playing each other at most once, it is possible for d2

αβ to
evaluate to zero, one, or two. Using the simple “one–step plus two–step”
tie-breaking approach shown in Example 134, the two–step results could
contribute a significant amount to the sum, perhaps more than you feel
the two–step data is worth as a way to distinguish teams. One way to
limit the two–step contribution is to cap the sum; for example, if the
two–step amount is greater than one, you could just add one.

7.6.4 Logical Matrix Powers

Because the definitions of matrix multiplication and logical matrix multipli-
cation are so similar in construction, the fact that we have a concept known

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 223

as logical matrix powers (a.k.a. boolean powers) that corresponds to matrix
powers should not be much of a surprise.

Definition 52: Logical Matrix Powers logical matrix powers

The nth logical matrix power of an m × m matrix L, denoted L[n], is
the m × m logical matrix resulting from n − 1 successive logical matrix
products. (Also known as Boolean Powers.)

Notice that we add square brackets around the exponent, to distinguish
the notations for matrix powers from logical matrix powers. Another detail
that we need to mention, for completeness: L[0] = I.

Example 149:

At the end of Example 148, we suggested capping the magnitude of the
two–step results as a way to keep them from contributing too much to
the “one–step plus two–step” sum. Computing a logical matrix power
instead of a matrix power will do this automatically.

Let’s extend the game example by another set of games: Alpha con-
tinues its domination of the league by defeating Beta, and Gamma defeats
Delta to keep Delta winless. D is now:

D =

α β γ δ

α 0 1 1 1
β 0 0 0 1
γ 0 1 0 1
δ 0 0 0 0

So that we can compare them, here are D2 and D[2]. The difference
should be easy to identify:

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

224 CHAPTER 7. MATRICES

D2 =

α β γ δ

α 0 1 1 2
β 0 0 0 0
γ 0 0 0 1
δ 0 0 0 0

D[2] =

α β γ δ

α 0 1 1 1
β 0 0 0 0
γ 0 0 0 1
δ 0 0 0 0

D2 reveals that Alpha is transitively ‘better’ than Delta in two ways:
Alpha defeating Beta and Beta defeating Delta is the first, and Alpha
defeating Gamma and Gamma defeating Delta is the second. Because
D2 is computed with addition, we get a sum of two:

d2
αδ = (dαα · dαδ) + (dαβ · dβδ) + (dαγ · dγδ) + (dαδ · dδδ)

= (0 · 1) + (1 · 1) + (1 · 1) + (1 · 0)

= 0 + 1 + 1 + 0

= 2

The content of a logical matrix power is naturally capped at one
because, now matter how many times we inclusively-OR with ‘true’, the
result is nothing more than ‘true’:20

d
[2]
αδ = (dαα ∧ dαδ) ∨ (dαβ ∧ dβδ) ∨ (dαγ ∧ dγδ) ∨ (dαδ ∧ dδδ)

= (0 ∧ 1) ∨ (1 ∧ 1) ∨ (1 ∧ 1) ∨ (1 ∧ 0)

= 0 ∨ 1 ∨ 1 ∨ 0

= 1

In Example 149, you may have noticed that, with this extra pair of games
in D, there are no ties — each team has a unique number of victories —
making the computation of the two–step wins unnecessary . . . if all we needed
them for was to break ties. Looking beyond ties, ranking teams and estimating

20Logically, nothing is more true than ‘true’, but one might look beyond logic: “Fairy
tales are more than true: not because they tell us that dragons exist, but because they tell
us that dragons can be beaten.” Neil Gaiman, in Coraline, attributed the quote to G. K.
Chesterton’s Tremendous Trifles, but Chesterton never wrote it.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 225

differences in measures of skill in various sports are important for reasons such
as tournament seeding and sports wagering. Some of the ranking schemes
created for these purposes include transitive results as contributing data.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!

	Matrices
	The Utility of Matrices
	Matrix Fundamentals
	Numeric Matrix Operations
	Matrix Powers and the Identity Matrix
	Matrix Operations in Orthographic Projections
	Logical Matrices

