Economics 519 Midterm Exam
 University of Arizona
 Fall 2016

Closed-book part: Don't consult books or notes until you've handed in your solutions to Problems $\# 1-\# 3$. After you do consult books or notes, your solutions to Problems \#1 - \#3 will not be accepted.

1. Let \mathcal{F} be the set of all real functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Write down a definition of addition and scalar multiplication of functions in \mathcal{F} under which \mathcal{F} is a vector space. You don't need to verify that this is a vector space.
(b) Let \mathcal{P} be the set of all polynomial functions: a function is in \mathcal{P} if and only if it can be written as $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ for some $n \in \mathbb{N}$ and some $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Prove that \mathcal{P} is a vector subspace of \mathcal{F}. (Note that two functions in \mathcal{P} need not be polynomials of the same degree.) You can again use any theorems we've stated in the course.
2. Let $f: \mathbb{R}_{++}^{2} \rightarrow \mathbb{R}$ be defined by $f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1}}+\frac{1}{x_{2}}$. Use the second-order conditions to determine whether f is concave or convex, and if it's neither (or you can't tell), use second-order conditions to determine whether it's quasiconcave or quasiconvex.
3. Let $f: S \rightarrow \mathbb{R}$ be a function defined on a convex set $S \subseteq \mathbb{R}^{n}$; let $a, b \in \mathbb{R}$, with $a>0$; and define $g: S \rightarrow \mathbb{R}$ by $g(x)=a f(x)+b$. Using only the definition of a concave function - don't assume that the functions are differentiable - prove that g is concave if and only if f is concave.

Open-book part: Be sure to turn in your solutions to Problems \#1-\#3 before using notes.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{2}^{2}+x_{1} x_{2}-x_{1}+x_{2}$.
(a) Determine the gradient and the Hessian matrix of f as functions of $\left(x_{1}, x_{2}\right)$.
(b) Find the critical point of f (there is only one; denote it by $\left.\overline{\mathbf{x}}=\left(\bar{x}_{1}, \bar{x}_{2}\right)\right)$.
(c) Write down the second-degree Taylor polynomial $P_{2}(\cdot)$ for f at $\overline{\mathbf{x}}$.
(d) Use the second-order conditions to determine whether $\overline{\mathbf{x}}$ is a local maximum or minimum for f.
(e) Use the first- and second-order conditions to determine the local and global maxima and minima of f (if any) subject to the constraint $x_{1}+x_{2}=2$. Determine the value of the Lagrange multiplier λ and draw a diagram depicting the constraint, the critical point(s), and the gradients ∇f and ∇G, where $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the function $G\left(x_{1}, x_{2}\right)=x_{1}+x_{2}=2$.
(f) Use the first- and second-order conditions to determine the local and global maxima and minima of f (if any) subject to the constraint $x_{1}-x_{2}=2$. Determine the value of the Lagrange multiplier λ and draw a diagram depicting the constraint, the critical point(s), and the gradients ∇f and ∇G, where $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the function $G\left(x_{1}, x_{2}\right)=x_{1}-x_{2}=2$.

